File size: 5,813 Bytes
39f528e
 
 
 
 
 
 
 
c2f3c2c
2dcdc14
 
 
845f8bb
2dcdc14
 
 
 
 
 
5a27084
 
2dcdc14
5a27084
5d55959
 
 
 
 
 
 
39f528e
 
 
 
 
 
c2f3c2c
2dcdc14
 
 
 
 
 
 
 
 
 
 
 
 
5d55959
 
 
 
 
 
 
 
39f528e
 
 
c2f3c2c
39f528e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f3c2c
39f528e
 
 
 
 
c2f3c2c
 
39f528e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import csv
import pandas as pd
import numpy as np
import os

def write_to_csv_departments(time,teachingscore,teaching,courseContentscore,courseContent,
                 examinationscore,examination,labWorkscore,labWork,libraryFacilitiesscore,
                 libraryFacilities,extraCurricularscore,extraCurricular):
    csv_file_path = 'dataset/database.csv'
    df = pd.read_csv(csv_file_path)
    
    # Creating a dictionary for the new row
    new_row = {'Timestamp': time, 'teachingscore': teachingscore, 'teaching': teaching,
               'coursecontentscore': courseContentscore, 'coursecontent': courseContent,
               'examinationscore': examinationscore, 'examination': examination,
               'labworkscore': labWorkscore, 'labwork': labWork, 'libraryfacilitiesscore': libraryFacilitiesscore,
               'libraryfacilities': libraryFacilities, 'extracurricularscore': extraCurricularscore,
               'extracurricular': extraCurricular, 'Email Address': ''}
    
    # Convert the new row to a DataFrame
    new_data = pd.DataFrame(new_row, index=[0])
    
    # Append the new data to the existing DataFrame
    df2 = pd.concat([df, new_data], ignore_index=True)

    # Append the new data to the existing DataFrame
    # df = df.append(new_data, ignore_index=True)
    # print(df2)

    df2.to_csv(csv_file_path, mode='w', index=False)




def write_to_csv_teachers(teacher1,teacher1score,teacher2,teacher2score,teacher3,teacher3score,
                          teacher4,teacher4score,teacher5,teacher5score,teacher6,teacher6score):
    csv_file_path = 'dataset/teacherdb.csv'
    
    # Read the existing headers
    df = pd.read_csv(csv_file_path)
    header = df.columns.tolist()
    
    # Create a dictionary for the new row
    new_row = {'teacher1': teacher1, 'teacher1score': teacher1score,
               'teacher2': teacher2, 'teacher2score': teacher2score,
               'teacher3': teacher3, 'teacher3score': teacher3score,
               'teacher4': teacher4, 'teacher4score': teacher4score,
               'teacher5': teacher5, 'teacher5score': teacher5score,
               'teacher6': teacher6, 'teacher6score': teacher6score}
    
    # Concat the new row to the DataFrame
    df2 = pd.concat([df, new_data], ignore_index=True)

    # Append the new data to the existing DataFrame
    # df = df.append(new_data, ignore_index=True)
    # print(df2)

    df2.to_csv(csv_file_path, mode='w', index=False)


def get_counts():
    csv_file_path = 'dataset/database.csv'
    df = pd.read_csv(csv_file_path)
    index = df.index
    no_of_students = len(index)
    total_feedbacks = len(index)*6

    df1 = df.groupby('teachingscore').count()[['teaching']]
    teaching_negative_count = df1['teaching'][-1]
    teaching_neutral_count = df1['teaching'][0]
    teaching_positive_count = df1['teaching'][1]

    df1 = df.groupby('coursecontentscore').count()[['coursecontent']]
    coursecontent_negative_count = df1['coursecontent'][-1]
    coursecontent_neutral_count = df1['coursecontent'][0]
    coursecontent_positive_count = df1['coursecontent'][1]

    df1 = df.groupby('examinationscore').count()[['examination']]
    examination_negative_count = df1['examination'][-1]
    examination_neutral_count = df1['examination'][0]
    examination_positive_count = df1['examination'][1]

    df1 = df.groupby('labworkscore').count()[['labwork']]
    labwork_negative_count = df1['labwork'][-1]
    labwork_neutral_count = df1['labwork'][0]
    labwork_positive_count = df1['labwork'][1]

    df1 = df.groupby('libraryfacilitiesscore').count()[['libraryfacilities']]
    libraryfacilities_negative_count = df1['libraryfacilities'][-1]
    libraryfacilities_neutral_count = df1['libraryfacilities'][0]
    libraryfacilities_positive_count = df1['libraryfacilities'][1]

    df1 = df.groupby('extracurricularscore').count()[['extracurricular']]
    extracurricular_negative_count = df1['extracurricular'][-1]
    extracurricular_neutral_count = df1['extracurricular'][0]
    extracurricular_positive_count = df1['extracurricular'][1]

    total_positive_feedbacks = teaching_positive_count + coursecontent_positive_count + examination_positive_count + labwork_positive_count + libraryfacilities_positive_count + extracurricular_positive_count
    total_neutral_feedbacks = teaching_neutral_count + coursecontent_neutral_count + examination_neutral_count + labwork_neutral_count + libraryfacilities_neutral_count + extracurricular_neutral_count
    total_negative_feedbacks = teaching_negative_count + coursecontent_negative_count + examination_negative_count +labwork_negative_count + libraryfacilities_negative_count + extracurricular_negative_count

    li = [teaching_positive_count,teaching_negative_count,teaching_neutral_count,
          coursecontent_positive_count,coursecontent_negative_count,coursecontent_neutral_count,
          examination_positive_count,examination_negative_count,examination_neutral_count,
          labwork_positive_count,labwork_negative_count,labwork_neutral_count,
          libraryfacilities_positive_count,libraryfacilities_negative_count,libraryfacilities_neutral_count,
          extracurricular_positive_count,extracurricular_negative_count,extracurricular_neutral_count]

    return no_of_students,\
           int(round(total_positive_feedbacks / total_feedbacks * 100)),\
           int(round(total_negative_feedbacks / total_feedbacks * 100)),\
           int(round(total_neutral_feedbacks / total_feedbacks * 100)),\
            li

def get_tables():
    csv_file_path = 'dataset/database.csv'
    df = pd.read_csv(csv_file_path)
    df = df.tail(5)
    return [df.to_html(classes='data')]

def get_titles():
    csv_file_path = 'dataset/database.csv'
    df = pd.read_csv('dataset/database.csv')
    return df.columns.values