Spaces:
Runtime error
Runtime error
import csv | |
import pandas as pd | |
import numpy as np | |
import os | |
def get_feedback_counts(): | |
# path = 'dataset/teacherdb.csv' | |
# df = pd.read_csv(path) | |
script_directory = os.path.dirname(os.path.abspath(__file__)) # Get the directory of the script | |
csv_file_path = os.path.join(script_directory, 'dataset', 'teacherdb.csv') # Construct the absolute path to the CSV file | |
if not os.path.exists(csv_file_path): | |
raise FileNotFoundError(f"File '{csv_file_path}' not found") | |
df = pd.read_csv(csv_file_path) | |
index = df.index | |
no_of_feedbacks = len(index) | |
total_feedbacks = len(index)*6 | |
df1 = df.groupby('teacher1score').count()[['teacher1']] | |
teacher1_negative_count = df1['teacher1'][-1] | |
teacher1_neutral_count = df1['teacher1'][0] | |
teacher1_positive_count = df1['teacher1'][1] | |
df1 = df.groupby('teacher2score').count()[['teacher2']] | |
teacher2_negative_count = df1['teacher2'][-1] | |
teacher2_neutral_count = df1['teacher2'][0] | |
teacher2_positive_count = df1['teacher2'][1] | |
df1 = df.groupby('teacher3score').count()[['teacher3']] | |
teacher3_negative_count = df1['teacher3'][-1] | |
teacher3_neutral_count = df1['teacher3'][0] | |
teacher3_positive_count = df1['teacher3'][1] | |
df1 = df.groupby('teacher4score').count()[['teacher4']] | |
teacher4_negative_count = df1['teacher4'][-1] | |
teacher4_neutral_count = df1['teacher4'][0] | |
teacher4_positive_count = df1['teacher4'][1] | |
df1 = df.groupby('teacher5score').count()[['teacher5']] | |
teacher5_negative_count = df1['teacher5'][-1] | |
teacher5_neutral_count = df1['teacher5'][0] | |
teacher5_positive_count = df1['teacher5'][1] | |
df1 = df.groupby('teacher6score').count()[['teacher6']] | |
teacher6_negative_count = df1['teacher6'][-1] | |
teacher6_neutral_count = df1['teacher6'][0] | |
teacher6_positive_count = df1['teacher6'][1] | |
total_positive_feedbacks = teacher1_positive_count + teacher2_positive_count + teacher3_positive_count + teacher4_positive_count + teacher5_positive_count + teacher6_positive_count | |
total_neutral_feedbacks = teacher1_neutral_count + teacher2_neutral_count + teacher3_neutral_count + teacher4_neutral_count + teacher5_neutral_count + teacher6_neutral_count | |
total_negative_feedbacks = teacher1_negative_count + teacher2_negative_count + teacher3_negative_count +teacher4_negative_count + teacher5_negative_count + teacher6_negative_count | |
li = [teacher1_positive_count,teacher1_negative_count,teacher1_neutral_count, | |
teacher2_positive_count,teacher2_negative_count,teacher2_neutral_count, | |
teacher3_positive_count,teacher3_negative_count,teacher3_neutral_count, | |
teacher4_positive_count,teacher4_negative_count,teacher4_neutral_count, | |
teacher5_positive_count,teacher5_negative_count,teacher5_neutral_count, | |
teacher6_positive_count,teacher6_negative_count,teacher6_neutral_count] | |
return no_of_feedbacks,\ | |
int(round(total_positive_feedbacks / total_feedbacks * 100)),\ | |
int(round(total_negative_feedbacks / total_feedbacks * 100)),\ | |
int(round(total_neutral_feedbacks / total_feedbacks * 100)),\ | |
li | |