import csv import pandas as pd import numpy as np import os def write_to_csv_departments(time,teachingscore,teaching,courseContentscore,courseContent, examinationscore,examination,labWorkscore,labWork,libraryFacilitiesscore, libraryFacilities,extraCurricularscore,extraCurricular): csv_file_path = 'dataset/database.csv' df = pd.read_csv(csv_file_path) header = df.columns.tolist() # Creating a dictionary for the new row new_row = {'Timestamp': time, 'teachingscore': teachingscore, 'teaching': teaching, 'coursecontentscore': courseContentscore, 'coursecontent': courseContent, 'examinationscore': examinationscore, 'examination': examination, 'labworkscore': labWorkscore, 'labwork': labWork, 'libraryfacilitiesscore': libraryFacilitiesscore, 'libraryfacilities': libraryFacilities, 'extracurricularscore': extraCurricularscore, 'extracurricular': extraCurricular, 'Email Address': ''} # Appending the new row to the DataFrame df = df.append(new_row, ignore_index=True) # Writing the DataFrame back to the CSV file df.to_csv(csv_file_path, index=False) def write_to_csv_teachers(teacher1,teacher1score,teacher2,teacher2score,teacher3,teacher3score, teacher4,teacher4score,teacher5,teacher5score,teacher6,teacher6score): csv_file_path = 'dataset/teacherdb.csv' # Read the existing headers df = pd.read_csv(csv_file_path) header = df.columns.tolist() # Create a dictionary for the new row new_row = {'teacher1': teacher1, 'teacher1score': teacher1score, 'teacher2': teacher2, 'teacher2score': teacher2score, 'teacher3': teacher3, 'teacher3score': teacher3score, 'teacher4': teacher4, 'teacher4score': teacher4score, 'teacher5': teacher5, 'teacher5score': teacher5score, 'teacher6': teacher6, 'teacher6score': teacher6score} # Append the new row to the DataFrame df = df.append(new_row, ignore_index=True) # Write the DataFrame back to the CSV file df.to_csv(csv_file_path, index=False) def get_counts(): csv_file_path = 'dataset/database.csv' df = pd.read_csv(csv_file_path) index = df.index no_of_students = len(index) total_feedbacks = len(index)*6 df1 = df.groupby('teachingscore').count()[['teaching']] teaching_negative_count = df1['teaching'][-1] teaching_neutral_count = df1['teaching'][0] teaching_positive_count = df1['teaching'][1] df1 = df.groupby('coursecontentscore').count()[['coursecontent']] coursecontent_negative_count = df1['coursecontent'][-1] coursecontent_neutral_count = df1['coursecontent'][0] coursecontent_positive_count = df1['coursecontent'][1] df1 = df.groupby('examinationscore').count()[['examination']] examination_negative_count = df1['examination'][-1] examination_neutral_count = df1['examination'][0] examination_positive_count = df1['examination'][1] df1 = df.groupby('labworkscore').count()[['labwork']] labwork_negative_count = df1['labwork'][-1] labwork_neutral_count = df1['labwork'][0] labwork_positive_count = df1['labwork'][1] df1 = df.groupby('libraryfacilitiesscore').count()[['libraryfacilities']] libraryfacilities_negative_count = df1['libraryfacilities'][-1] libraryfacilities_neutral_count = df1['libraryfacilities'][0] libraryfacilities_positive_count = df1['libraryfacilities'][1] df1 = df.groupby('extracurricularscore').count()[['extracurricular']] extracurricular_negative_count = df1['extracurricular'][-1] extracurricular_neutral_count = df1['extracurricular'][0] extracurricular_positive_count = df1['extracurricular'][1] total_positive_feedbacks = teaching_positive_count + coursecontent_positive_count + examination_positive_count + labwork_positive_count + libraryfacilities_positive_count + extracurricular_positive_count total_neutral_feedbacks = teaching_neutral_count + coursecontent_neutral_count + examination_neutral_count + labwork_neutral_count + libraryfacilities_neutral_count + extracurricular_neutral_count total_negative_feedbacks = teaching_negative_count + coursecontent_negative_count + examination_negative_count +labwork_negative_count + libraryfacilities_negative_count + extracurricular_negative_count li = [teaching_positive_count,teaching_negative_count,teaching_neutral_count, coursecontent_positive_count,coursecontent_negative_count,coursecontent_neutral_count, examination_positive_count,examination_negative_count,examination_neutral_count, labwork_positive_count,labwork_negative_count,labwork_neutral_count, libraryfacilities_positive_count,libraryfacilities_negative_count,libraryfacilities_neutral_count, extracurricular_positive_count,extracurricular_negative_count,extracurricular_neutral_count] return no_of_students,\ int(round(total_positive_feedbacks / total_feedbacks * 100)),\ int(round(total_negative_feedbacks / total_feedbacks * 100)),\ int(round(total_neutral_feedbacks / total_feedbacks * 100)),\ li def get_tables(): csv_file_path = 'dataset/database.csv' df = pd.read_csv(csv_file_path) df = df.tail(5) return [df.to_html(classes='data')] def get_titles(): csv_file_path = 'dataset/database.csv' df = pd.read_csv('dataset/database.csv') return df.columns.values