abhicodes commited on
Commit
d903211
·
verified ·
1 Parent(s): 81bd982

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -14
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import gradio as gr
2
  from transformers import pipeline
 
3
  import cv2
4
  import numpy as np
5
  import requests
@@ -18,26 +19,32 @@ API_KEY = os.getenv("API_KEY")
18
 
19
  # BRAIN_TUMOR_API_URL = "https://api-inference.huggingface.co/models/Devarshi/Brain_Tumor_Classification"
20
  BREAST_CANCER_API_URL = "https://api-inference.huggingface.co/models/MUmairAB/Breast_Cancer_Detector"
21
- ALZHEIMER_API_URL = "https://api-inference.huggingface.co/models/dewifaj/alzheimer_mri_classification"
22
  headers = {"Authorization": "Bearer "+API_KEY+"", 'Content-Type': 'application/json'}
23
- # alzheimer_classifier = pipeline("image-classification", model="dewifaj/alzheimer_mri_classification")
24
  # breast_cancer_classifier = pipeline("image-classification", model="MUmairAB/Breast_Cancer_Detector")
25
  brain_tumor_classifier = pipeline("image-classification", model="Devarshi/Brain_Tumor_Classification")
26
 
27
  # Create a function to Detect/Classify Alzheimer
28
  def classify_alzheimer(image):
29
- image_data = np.array(image, dtype=np.uint8)
30
- _, buffer = cv2.imencode('.jpg', image_data)
31
- binary_data = buffer.tobytes()
32
-
33
- response = requests.post(ALZHEIMER_API_URL, headers=headers, data=binary_data)
34
- result = {}
35
- print(response.json())
36
- for ele in response.json():
37
- label, score = ele.values()
38
- result[label] = score
39
-
40
- return result
 
 
 
 
 
 
41
 
42
 
43
  # Create a function to Detect/Classify Breast_Cancer
 
1
  import gradio as gr
2
  from transformers import pipeline
3
+ from PIL import Image
4
  import cv2
5
  import numpy as np
6
  import requests
 
19
 
20
  # BRAIN_TUMOR_API_URL = "https://api-inference.huggingface.co/models/Devarshi/Brain_Tumor_Classification"
21
  BREAST_CANCER_API_URL = "https://api-inference.huggingface.co/models/MUmairAB/Breast_Cancer_Detector"
22
+ # ALZHEIMER_API_URL = "https://api-inference.huggingface.co/models/dewifaj/alzheimer_mri_classification"
23
  headers = {"Authorization": "Bearer "+API_KEY+"", 'Content-Type': 'application/json'}
24
+ alzheimer_classifier = pipeline("image-classification", model="dewifaj/alzheimer_mri_classification")
25
  # breast_cancer_classifier = pipeline("image-classification", model="MUmairAB/Breast_Cancer_Detector")
26
  brain_tumor_classifier = pipeline("image-classification", model="Devarshi/Brain_Tumor_Classification")
27
 
28
  # Create a function to Detect/Classify Alzheimer
29
  def classify_alzheimer(image):
30
+ # image_data = np.array(image, dtype=np.uint8)
31
+ # _, buffer = cv2.imencode('.jpg', image_data)
32
+ # binary_data = buffer.tobytes()
33
+
34
+ # response = requests.post(ALZHEIMER_API_URL, headers=headers, data=binary_data)
35
+ # result = {}
36
+ # print(response.json())
37
+ # for ele in response.json():
38
+ # label, score = ele.values()
39
+ # result[label] = score
40
+
41
+ # return result
42
+ image_pil = Image.open(image)
43
+ result = alzheimer_classifier(image)
44
+ prediction = result[0]
45
+ score = prediction['score']
46
+ label = prediction['label']
47
+ return {"score": score, "label": label}
48
 
49
 
50
  # Create a function to Detect/Classify Breast_Cancer