Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,35 @@
|
|
1 |
import cv2
|
2 |
import easyocr
|
3 |
import gradio as gr
|
4 |
-
import
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Instance text detector
|
7 |
reader = easyocr.Reader(['en'], gpu=False)
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def text_extraction(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
text_ = reader.readtext(image)
|
11 |
|
12 |
threshold = 0.25
|
@@ -14,19 +37,19 @@ def text_extraction(image):
|
|
14 |
for t_, t in enumerate(text_):
|
15 |
bbox, text, score = t
|
16 |
|
17 |
-
|
18 |
-
cv2.rectangle(image, tuple(map(int, bbox[0])), tuple(map(int, bbox[2])), (255, 0, 0), 2)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
# Define Gradio interface
|
26 |
iface = gr.Interface(
|
27 |
fn=text_extraction,
|
28 |
inputs=gr.Image(),
|
29 |
-
outputs=["
|
30 |
)
|
31 |
|
32 |
# Launch the Gradio interface
|
|
|
1 |
import cv2
|
2 |
import easyocr
|
3 |
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import requests
|
6 |
+
|
7 |
+
API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection"
|
8 |
+
headers = {"Authorization": "Bearer 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"}
|
9 |
|
10 |
# Instance text detector
|
11 |
reader = easyocr.Reader(['en'], gpu=False)
|
12 |
|
13 |
+
|
14 |
+
def query(image):
|
15 |
+
image_data = np.array(image, dtype=np.uint8)
|
16 |
+
|
17 |
+
# Convert the image data to binary format (JPEG)
|
18 |
+
_, buffer = cv2.imencode('.jpg', image_data)
|
19 |
+
|
20 |
+
# Convert the binary data to bytes
|
21 |
+
binary_data = buffer.tobytes()
|
22 |
+
|
23 |
+
response = requests.post(API_URL, headers=headers, data=binary_data)
|
24 |
+
return response.json()
|
25 |
+
|
26 |
def text_extraction(image):
|
27 |
+
|
28 |
+
# Facial Expression Detection
|
29 |
+
global text_content
|
30 |
+
text_content = ''
|
31 |
+
facial_data = query(image)
|
32 |
+
|
33 |
text_ = reader.readtext(image)
|
34 |
|
35 |
threshold = 0.25
|
|
|
37 |
for t_, t in enumerate(text_):
|
38 |
bbox, text, score = t
|
39 |
|
40 |
+
text_content = text_content + ' ' + ' '.join(text)
|
|
|
41 |
|
42 |
+
if score > threshold:
|
43 |
+
cv2.rectangle(image, tuple(map(int, bbox[0])), tuple(map(int, bbox[2])), (0, 255, 0), 5)
|
44 |
|
45 |
+
#output the image
|
46 |
+
return image, text_content, facial_data
|
47 |
|
48 |
# Define Gradio interface
|
49 |
iface = gr.Interface(
|
50 |
fn=text_extraction,
|
51 |
inputs=gr.Image(),
|
52 |
+
outputs=[gr.Image(), gr.Textbox(label="Text Content"), gr.JSON(label="Facial Data")]
|
53 |
)
|
54 |
|
55 |
# Launch the Gradio interface
|