Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer,AutoModelForQuestionAnswering | |
import torch | |
def inference(question,context): | |
question_first=bool(tokenizer.padding_side=='right') | |
max_answer_len=5 | |
encoded_text=tokenizer.encode_plus(question,context,padding='longest', | |
truncation="longest_first" , | |
max_length=512, | |
stride=30, | |
return_tensors="pt", | |
return_token_type_ids=False, | |
return_overflowing_tokens=False, | |
return_offsets_mapping=False, | |
return_special_tokens_mask=False) | |
input_ids=encoded_text['input_ids'].tolist()[0] | |
tokens=tokenizer.convert_ids_to_tokens(input_ids) | |
with torch.no_grad(): | |
outputs=model(**encoded_text) | |
# answer_st=outputs.start_logits | |
# answer_et=outputs.end_logits | |
start_,end_=outputs[:2] | |
answer_start=torch.argmax(start_) | |
answer_end=torch.argmax(end_)+1 | |
answer=tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end])) | |
return answer | |
model=AutoModelForQuestionAnswering.from_pretrained('abhilash1910/albert-squad-v2') | |
tokenizer=AutoTokenizer.from_pretrained('abhilash1910/albert-squad-v2') | |
''' | |
nlp_QA=pipeline('question-answering',model=model,tokenizer=tokenizer) | |
QA_inp={ | |
'question': 'How many parameters does Bert large have?', | |
'context': 'Bert large is really big... it has 24 layers, for a total of 340M parameters.Altogether it is 1.34 GB so expect it to take a couple minutes to download to your Colab instance.' | |
} | |
result=nlp_QA(QA_inp) | |
''' | |
question='How many parameters does Bert large have?' | |
context='Bert large is really big... it has 24 layers, for a total of 340M parameters.Altogether it is 1.34 GB so expect it to take a couple minutes to download to your Colab instance.' | |
title = 'Question Answering demo with Albert QA transformer and gradio' | |
gr.Interface(inference,inputs=[gr.inputs.Textbox(lines=7, default=context, label="Context"), gr.inputs.Textbox(lines=2, default=question, label="Question")], | |
outputs=[gr.outputs.Textbox(type="auto",label="Answer")],title = title,theme = "peach").launch() |