Spaces:
Runtime error
Runtime error
Commit
·
e3d993b
1
Parent(s):
49e0baa
Initial Commit
Browse files
app.py
CHANGED
@@ -1,12 +1,46 @@
|
|
1 |
-
|
2 |
from transformers import AutoTokenizer,AutoModelForQuestionAnswering
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
model=AutoModelForQuestionAnswering.from_pretrained('abhilash1910/albert-squad-v2')
|
5 |
tokenizer=AutoTokenizer.from_pretrained('abhilash1910/albert-squad-v2')
|
|
|
6 |
nlp_QA=pipeline('question-answering',model=model,tokenizer=tokenizer)
|
7 |
QA_inp={
|
8 |
'question': 'How many parameters does Bert large have?',
|
9 |
'context': 'Bert large is really big... it has 24 layers, for a total of 340M parameters.Altogether it is 1.34 GB so expect it to take a couple minutes to download to your Colab instance.'
|
10 |
}
|
|
|
11 |
result=nlp_QA(QA_inp)
|
12 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
from transformers import AutoTokenizer,AutoModelForQuestionAnswering
|
3 |
+
import torch
|
4 |
+
|
5 |
+
def inference(question,context):
|
6 |
+
question_first=bool(tokenizer.padding_side=='right')
|
7 |
+
max_answer_len=5
|
8 |
+
encoded_text=tokenizer.encode_plus(question,context,padding='longest',
|
9 |
+
truncation="longest_first" ,
|
10 |
+
max_length=512,
|
11 |
+
stride=30,
|
12 |
+
return_tensors="pt",
|
13 |
+
return_token_type_ids=False,
|
14 |
+
return_overflowing_tokens=False,
|
15 |
+
return_offsets_mapping=False,
|
16 |
+
return_special_tokens_mask=False)
|
17 |
+
input_ids=encoded_text['input_ids'].tolist()[0]
|
18 |
+
tokens=tokenizer.convert_ids_to_tokens(input_ids)
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs=model(**encoded_text)
|
21 |
+
# answer_st=outputs.start_logits
|
22 |
+
# answer_et=outputs.end_logits
|
23 |
+
start_,end_=outputs[:2]
|
24 |
+
answer_start=torch.argmax(start_)
|
25 |
+
answer_end=torch.argmax(end_)+1
|
26 |
+
answer=tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
|
27 |
+
print(answer)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
model=AutoModelForQuestionAnswering.from_pretrained('abhilash1910/albert-squad-v2')
|
33 |
tokenizer=AutoTokenizer.from_pretrained('abhilash1910/albert-squad-v2')
|
34 |
+
'''
|
35 |
nlp_QA=pipeline('question-answering',model=model,tokenizer=tokenizer)
|
36 |
QA_inp={
|
37 |
'question': 'How many parameters does Bert large have?',
|
38 |
'context': 'Bert large is really big... it has 24 layers, for a total of 340M parameters.Altogether it is 1.34 GB so expect it to take a couple minutes to download to your Colab instance.'
|
39 |
}
|
40 |
+
|
41 |
result=nlp_QA(QA_inp)
|
42 |
+
'''
|
43 |
+
question='How many parameters does Bert large have?'
|
44 |
+
context='Bert large is really big... it has 24 layers, for a total of 340M parameters.Altogether it is 1.34 GB so expect it to take a couple minutes to download to your Colab instance.'
|
45 |
+
title = 'Question Answering demo with Albert QA transformer and gradio'
|
46 |
+
interface = gr.Interface.from_pipeline(inference,title = title,theme = "peach",examples = [[context, question]]).launch()
|