Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,6 +24,7 @@ from vocoder.bigvgan.models import VocoderBigVGAN
|
|
24 |
import soundfile
|
25 |
# from pytorch_memlab import LineProfiler,profile
|
26 |
import gradio
|
|
|
27 |
|
28 |
def load_model_from_config(config, ckpt = None, verbose=True):
|
29 |
model = instantiate_from_config(config.model)
|
@@ -50,7 +51,7 @@ def load_model_from_config(config, ckpt = None, verbose=True):
|
|
50 |
|
51 |
|
52 |
class GenSamples:
|
53 |
-
def __init__(self,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True, original_inference_steps=None) -> None:
|
54 |
self.sampler = sampler
|
55 |
self.model = model
|
56 |
self.outpath = outpath
|
@@ -61,29 +62,33 @@ class GenSamples:
|
|
61 |
self.save_wav = save_wav
|
62 |
self.channel_dim = self.model.channels
|
63 |
self.original_inference_steps = original_inference_steps
|
|
|
|
|
|
|
64 |
|
65 |
def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
|
66 |
uc = None
|
67 |
record_dicts = []
|
68 |
# if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')):
|
69 |
# return record_dicts
|
70 |
-
|
71 |
-
|
|
|
72 |
|
73 |
for n in range(1):# trange(self.opt.n_iter, desc="Sampling"):
|
74 |
for k,v in prompt.items():
|
75 |
-
prompt[k] =
|
76 |
c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
|
77 |
if self.channel_dim>0:
|
78 |
shape = [self.channel_dim, 20, 312] # (z_dim, 80//2^x, 848//2^x)
|
79 |
else:
|
80 |
shape = [20, 312]
|
81 |
-
samples_ddim, _ = self.sampler.sample(S=
|
82 |
conditioning=c,
|
83 |
-
batch_size=
|
84 |
shape=shape,
|
85 |
verbose=False,
|
86 |
-
guidance_scale=
|
87 |
original_inference_steps=self.original_inference_steps
|
88 |
)
|
89 |
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
|
@@ -103,7 +108,9 @@ class GenSamples:
|
|
103 |
return record_dicts
|
104 |
|
105 |
@spaces.GPU(enable_queue=True)
|
106 |
-
def infer(ori_prompt):
|
|
|
|
|
107 |
|
108 |
prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')
|
109 |
|
@@ -124,7 +131,7 @@ def infer(ori_prompt):
|
|
124 |
vocoder = VocoderBigVGAN("./model/vocoder",device)
|
125 |
|
126 |
|
127 |
-
generator = GenSamples(sampler,model,"results/test",vocoder,save_mel = False,save_wav = True, original_inference_steps=config.model.params.num_ddim_timesteps)
|
128 |
csv_dicts = []
|
129 |
|
130 |
with torch.no_grad():
|
@@ -135,15 +142,61 @@ def infer(ori_prompt):
|
|
135 |
print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.")
|
136 |
return "results/test/"+wav_name+"_0.wav"
|
137 |
|
138 |
-
def my_inference_function(text_prompt):
|
139 |
-
file_path = infer(text_prompt)
|
140 |
return file_path
|
141 |
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
)
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
import soundfile
|
25 |
# from pytorch_memlab import LineProfiler,profile
|
26 |
import gradio
|
27 |
+
import gradio as gr
|
28 |
|
29 |
def load_model_from_config(config, ckpt = None, verbose=True):
|
30 |
model = instantiate_from_config(config.model)
|
|
|
51 |
|
52 |
|
53 |
class GenSamples:
|
54 |
+
def __init__(self,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True, original_inference_steps=None, ddim_steps=2, scale=5, num_samples=1) -> None:
|
55 |
self.sampler = sampler
|
56 |
self.model = model
|
57 |
self.outpath = outpath
|
|
|
62 |
self.save_wav = save_wav
|
63 |
self.channel_dim = self.model.channels
|
64 |
self.original_inference_steps = original_inference_steps
|
65 |
+
self.ddim_steps = ddim_steps
|
66 |
+
self.scale = scale
|
67 |
+
self.num_samples = num_samples
|
68 |
|
69 |
def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
|
70 |
uc = None
|
71 |
record_dicts = []
|
72 |
# if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')):
|
73 |
# return record_dicts
|
74 |
+
if self.scale != 1.0:
|
75 |
+
emptycap = {'ori_caption':self.num_samples*[""],'struct_caption':self.num_samples*[""]}
|
76 |
+
uc = self.model.get_learned_conditioning(emptycap)
|
77 |
|
78 |
for n in range(1):# trange(self.opt.n_iter, desc="Sampling"):
|
79 |
for k,v in prompt.items():
|
80 |
+
prompt[k] = self.num_samples * [v]
|
81 |
c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
|
82 |
if self.channel_dim>0:
|
83 |
shape = [self.channel_dim, 20, 312] # (z_dim, 80//2^x, 848//2^x)
|
84 |
else:
|
85 |
shape = [20, 312]
|
86 |
+
samples_ddim, _ = self.sampler.sample(S=self.ddim_steps,
|
87 |
conditioning=c,
|
88 |
+
batch_size=self.num_samples,
|
89 |
shape=shape,
|
90 |
verbose=False,
|
91 |
+
guidance_scale=self.scale,
|
92 |
original_inference_steps=self.original_inference_steps
|
93 |
)
|
94 |
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
|
|
|
108 |
return record_dicts
|
109 |
|
110 |
@spaces.GPU(enable_queue=True)
|
111 |
+
def infer(ori_prompt, ddim_steps, num_samples, scale, seed):
|
112 |
+
np.random.seed(seed)
|
113 |
+
torch.manual_seed(seed)
|
114 |
|
115 |
prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')
|
116 |
|
|
|
131 |
vocoder = VocoderBigVGAN("./model/vocoder",device)
|
132 |
|
133 |
|
134 |
+
generator = GenSamples(sampler,model,"results/test",vocoder,save_mel = False,save_wav = True, original_inference_steps=config.model.params.num_ddim_timesteps, ddim_steps=ddim_steps, scale=scale, num_samples=num_samples)
|
135 |
csv_dicts = []
|
136 |
|
137 |
with torch.no_grad():
|
|
|
142 |
print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.")
|
143 |
return "results/test/"+wav_name+"_0.wav"
|
144 |
|
145 |
+
def my_inference_function(text_prompt, ddim_steps, num_samples, scale, seed):
|
146 |
+
file_path = infer(text_prompt, ddim_steps, num_samples, scale, seed)
|
147 |
return file_path
|
148 |
|
149 |
|
150 |
+
with gr.Blocks() as demo:
|
151 |
+
with gr.Row():
|
152 |
+
tgr.Markdown("## AudioLCM:Text-to-Audio Generation with Latent Consistency Models")
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
with gr.Column():
|
156 |
+
prompt = gr.Textbox(label="Prompt: Input your text here. ")
|
157 |
+
run_button = gr.Button(label="Run")
|
158 |
+
|
159 |
+
with gr.Accordion("Advanced options", open=False):
|
160 |
+
num_samples = gr.Slider(
|
161 |
+
label="Select from audios num.This number control the number of candidates \
|
162 |
+
(e.g., generate three audios and choose the best to show you). A Larger value usually lead to \
|
163 |
+
better quality with heavier computation", minimum=1, maximum=10, value=1, step=1)
|
164 |
+
# num_samples = 1
|
165 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1,
|
166 |
+
maximum=150, value=2, step=1)
|
167 |
+
scale = gr.Slider(
|
168 |
+
label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=5.0, step=0.1
|
169 |
+
)
|
170 |
+
seed = gr.Slider(
|
171 |
+
label="Seed:Change this value (any integer number) will lead to a different generation result.",
|
172 |
+
minimum=0,
|
173 |
+
maximum=2147483647,
|
174 |
+
step=1,
|
175 |
+
value=44,
|
176 |
+
)
|
177 |
+
|
178 |
+
with gr.Column():
|
179 |
+
outaudio = gr.Audio()
|
180 |
+
|
181 |
+
run_button.click(fn=my_inference_function, inputs=[
|
182 |
+
prompt,ddim_steps, num_samples, scale, seed], outputs=[outaudio])
|
183 |
+
with gr.Row():
|
184 |
+
with gr.Column():
|
185 |
+
gr.Examples(
|
186 |
+
examples = [['a dog barking and a bird chirping',100,3,3,55],['Pigeons peck, coo, and flap their wings before a man speaks',100,3,3,55],
|
187 |
+
['music of violin and piano',100,3,2,88],['wind thunder and rain falling',100,3,3,55],['music made by drum kit',100,3,3,55]],
|
188 |
+
inputs = [prompt,ddim_steps, num_samples, scale, seed],
|
189 |
+
outputs = [outaudio]
|
190 |
+
)
|
191 |
+
with gr.Column():
|
192 |
+
pass
|
193 |
+
|
194 |
+
demo.launch()
|
195 |
+
|
196 |
+
|
197 |
+
# gradio_interface = gradio.Interface(
|
198 |
+
# fn = my_inference_function,
|
199 |
+
# inputs = "text",
|
200 |
+
# outputs = "audio"
|
201 |
+
# )
|
202 |
+
# gradio_interface.launch()
|