Spaces:
Running
Running
import gradio as gr | |
import os | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
TITLE = '' | |
DESCRIPTION = '' | |
LICENSE = """ | |
<p>Built with Llama</p> | |
""" | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.85;">Gameapp</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.75;">Ask me anything...</p> | |
</div> | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
} | |
.gradio-container { | |
border: 1px solid #ddd; | |
border-radius: 10px; | |
padding: 20px; | |
box-shadow: 0 4px 8px rgba(0,0,0,0.1); | |
} | |
.gradio-chatbot .input-container { | |
border-top: 1px solid #ddd; | |
padding-top: 10px; | |
} | |
.gradio-chatbot .input-container textarea { | |
border: 1px solid #ddd; | |
border-radius: 5px; | |
padding: 10px; | |
width: 100%; | |
box-sizing: border-box; | |
resize: none; | |
height: 50px; | |
} | |
.gradio-chatbot .message { | |
border-radius: 10px; | |
padding: 10px; | |
margin: 10px 0; | |
box-shadow: 0 4px 8px rgba(0,0,0,0.1); | |
} | |
.gradio-chatbot .message.user { | |
background-color: #f5f5f5; | |
} | |
.gradio-chatbot .message.assistant { | |
background-color: #e6f7ff; | |
} | |
""" | |
model_id = "abhillubillu/gameapp_model" | |
hf_token = os.getenv("HF_API_TOKEN") | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token) | |
model = AutoModelForCausalLM.from_pretrained(model_id, token=hf_token, device_map="auto") | |
# Ensure eos_token_id is set | |
eos_token_id = tokenizer.eos_token_id | |
if eos_token_id is None: | |
eos_token_id = tokenizer.pad_token_id | |
terminators = [ | |
eos_token_id, | |
tokenizer.convert_tokens_to_ids("") | |
] | |
MAX_INPUT_TOKEN_LENGTH = 4096 | |
# Gradio inference function | |
def chat_llama3_1_8b(message: str, | |
history: list, | |
temperature: float, | |
max_new_tokens: int | |
) -> str: | |
""" | |
Generate a streaming response using the llama3-8b model. | |
Args: | |
message (str): The input message. | |
history (list): The conversation history used by ChatInterface. | |
temperature (float): The temperature for generating the response. | |
max_new_tokens (int): The maximum number of new tokens to generate. | |
Returns: | |
str: The generated response. | |
""" | |
conversation = [] | |
for user, assistant in history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids= input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=temperature != 0, # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. | |
temperature=temperature, | |
eos_token_id=terminators, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
# Gradio block | |
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') | |
with gr.Blocks(fill_height=True, css=css) as demo: | |
gr.Markdown(TITLE) | |
gr.Markdown(DESCRIPTION) | |
gr.ChatInterface( | |
fn=chat_llama3_1_8b, | |
chatbot=chatbot, | |
fill_height=True, | |
examples_per_page=3, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider(minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.95, | |
label="Temperature", | |
render=False), | |
gr.Slider(minimum=128, | |
maximum=4096, | |
step=1, | |
value=512, | |
label="Max new tokens", | |
render=False ), | |
], | |
examples=[ | |
["There's a llama in my garden 😱 What should I do?"], | |
["What is the best way to open a can of worms?"], | |
["The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1. "], | |
['How to setup a human base on Mars? Give short answer.'], | |
['Explain theory of relativity to me like I’m 8 years old.'], | |
['What is 9,000 * 9,000?'], | |
['Write a pun-filled happy birthday message to my friend Alex.'], | |
['Justify why a penguin might make a good king of the jungle.'] | |
], | |
cache_examples=False, | |
) | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.launch() | |