Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,178 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import spaces
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
5 |
-
from threading import Thread
|
6 |
|
7 |
-
TITLE = ''
|
8 |
-
|
9 |
-
DESCRIPTION = ''
|
10 |
-
|
11 |
-
LICENSE = """
|
12 |
-
<p>Built with Llama</p>
|
13 |
-
"""
|
14 |
-
|
15 |
-
PLACEHOLDER = """
|
16 |
-
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
17 |
-
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.85;">Gameapp</h1>
|
18 |
-
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.75;">Ask me anything...</p>
|
19 |
-
</div>
|
20 |
"""
|
21 |
-
|
22 |
-
css = """
|
23 |
-
h1 {
|
24 |
-
text-align: center;
|
25 |
-
display: block;
|
26 |
-
display: flex;
|
27 |
-
align-items: center;
|
28 |
-
justify-content: center;
|
29 |
-
}
|
30 |
-
|
31 |
-
.gradio-container {
|
32 |
-
border: 1px solid #ddd;
|
33 |
-
border-radius: 10px;
|
34 |
-
padding: 20px;
|
35 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
36 |
-
}
|
37 |
-
|
38 |
-
.gradio-chatbot .input-container {
|
39 |
-
border-top: 1px solid #ddd;
|
40 |
-
padding-top: 10px;
|
41 |
-
}
|
42 |
-
|
43 |
-
.gradio-chatbot .input-container textarea {
|
44 |
-
border: 1px solid #ddd;
|
45 |
-
border-radius: 5px;
|
46 |
-
padding: 10px;
|
47 |
-
width: 100%;
|
48 |
-
box-sizing: border-box;
|
49 |
-
resize: none;
|
50 |
-
height: 50px;
|
51 |
-
}
|
52 |
-
|
53 |
-
.gradio-chatbot .message {
|
54 |
-
border-radius: 10px;
|
55 |
-
padding: 10px;
|
56 |
-
margin: 10px 0;
|
57 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
58 |
-
}
|
59 |
-
|
60 |
-
.gradio-chatbot .message.user {
|
61 |
-
background-color: #f5f5f5;
|
62 |
-
}
|
63 |
-
|
64 |
-
.gradio-chatbot .message.assistant {
|
65 |
-
background-color: #e6f7ff;
|
66 |
-
}
|
67 |
"""
|
|
|
68 |
|
69 |
-
model_id = "abhillubillu/gameapp_model"
|
70 |
-
hf_token = os.getenv("HF_API_TOKEN")
|
71 |
-
|
72 |
-
# Load the tokenizer and model
|
73 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
|
74 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, token=hf_token, device_map="auto")
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
]
|
|
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
-
@spaces.GPU(duration=120)
|
90 |
-
def chat_llama3_1_8b(message: str,
|
91 |
-
history: list,
|
92 |
-
temperature: float,
|
93 |
-
max_new_tokens: int
|
94 |
-
) -> str:
|
95 |
-
"""
|
96 |
-
Generate a streaming response using the llama3-8b model.
|
97 |
-
Args:
|
98 |
-
message (str): The input message.
|
99 |
-
history (list): The conversation history used by ChatInterface.
|
100 |
-
temperature (float): The temperature for generating the response.
|
101 |
-
max_new_tokens (int): The maximum number of new tokens to generate.
|
102 |
-
Returns:
|
103 |
-
str: The generated response.
|
104 |
-
"""
|
105 |
-
conversation = []
|
106 |
-
for user, assistant in history:
|
107 |
-
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
108 |
-
conversation.append({"role": "user", "content": message})
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
input_ids = input_ids.to(model.device)
|
115 |
-
|
116 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
117 |
-
|
118 |
-
generate_kwargs = dict(
|
119 |
-
input_ids= input_ids,
|
120 |
-
streamer=streamer,
|
121 |
-
max_new_tokens=max_new_tokens,
|
122 |
-
do_sample=temperature != 0, # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
|
123 |
temperature=temperature,
|
124 |
-
|
125 |
-
)
|
126 |
-
|
127 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
128 |
-
t.start()
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
outputs.append(text)
|
133 |
-
yield "".join(outputs)
|
134 |
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
with gr.Blocks(fill_height=True, css=css) as demo:
|
139 |
|
140 |
-
gr.Markdown(TITLE)
|
141 |
-
gr.Markdown(DESCRIPTION)
|
142 |
-
gr.ChatInterface(
|
143 |
-
fn=chat_llama3_1_8b,
|
144 |
-
chatbot=chatbot,
|
145 |
-
fill_height=True,
|
146 |
-
examples_per_page=3,
|
147 |
-
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
148 |
-
additional_inputs=[
|
149 |
-
gr.Slider(minimum=0,
|
150 |
-
maximum=1,
|
151 |
-
step=0.1,
|
152 |
-
value=0.95,
|
153 |
-
label="Temperature",
|
154 |
-
render=False),
|
155 |
-
gr.Slider(minimum=128,
|
156 |
-
maximum=4096,
|
157 |
-
step=1,
|
158 |
-
value=512,
|
159 |
-
label="Max new tokens",
|
160 |
-
render=False ),
|
161 |
-
],
|
162 |
-
examples=[
|
163 |
-
["There's a llama in my garden 😱 What should I do?"],
|
164 |
-
["What is the best way to open a can of worms?"],
|
165 |
-
["The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1. "],
|
166 |
-
['How to setup a human base on Mars? Give short answer.'],
|
167 |
-
['Explain theory of relativity to me like I’m 8 years old.'],
|
168 |
-
['What is 9,000 * 9,000?'],
|
169 |
-
['Write a pun-filled happy birthday message to my friend Alex.'],
|
170 |
-
['Justify why a penguin might make a good king of the jungle.']
|
171 |
-
],
|
172 |
-
cache_examples=False,
|
173 |
-
)
|
174 |
-
|
175 |
-
gr.Markdown(LICENSE)
|
176 |
-
|
177 |
if __name__ == "__main__":
|
178 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"""
|
7 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def respond(
|
11 |
+
message,
|
12 |
+
history: list[tuple[str, str]],
|
13 |
+
system_message,
|
14 |
+
max_tokens,
|
15 |
+
temperature,
|
16 |
+
top_p,
|
17 |
+
):
|
18 |
+
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
+
for val in history:
|
21 |
+
if val[0]:
|
22 |
+
messages.append({"role": "user", "content": val[0]})
|
23 |
+
if val[1]:
|
24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
+
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
+
response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
for message in client.chat_completion(
|
31 |
+
messages,
|
32 |
+
max_tokens=max_tokens,
|
33 |
+
stream=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
temperature=temperature,
|
35 |
+
top_p=top_p,
|
36 |
+
):
|
37 |
+
token = message.choices[0].delta.content
|
|
|
|
|
38 |
|
39 |
+
response += token
|
40 |
+
yield response
|
|
|
|
|
41 |
|
42 |
+
"""
|
43 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
+
"""
|
45 |
+
demo = gr.ChatInterface(
|
46 |
+
respond,
|
47 |
+
additional_inputs=[
|
48 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
+
gr.Slider(
|
52 |
+
minimum=0.1,
|
53 |
+
maximum=1.0,
|
54 |
+
value=0.95,
|
55 |
+
step=0.05,
|
56 |
+
label="Top-p (nucleus sampling)",
|
57 |
+
),
|
58 |
+
],
|
59 |
+
)
|
60 |
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
if __name__ == "__main__":
|
63 |
+
demo.launch()
|