Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from ultralytics import YOLO
|
5 |
+
import time
|
6 |
+
|
7 |
+
# Set page title and layout
|
8 |
+
st.set_page_config(page_title="Blood Component Detection", page_icon="🩸", layout="wide")
|
9 |
+
|
10 |
+
# Styling the app
|
11 |
+
st.markdown("""
|
12 |
+
<style>
|
13 |
+
.stApp {
|
14 |
+
background-color: #f4f6f9;
|
15 |
+
}
|
16 |
+
.title {
|
17 |
+
color: #000;
|
18 |
+
font-size: 40px;
|
19 |
+
font-weight: bold;
|
20 |
+
margin-top: 20px;
|
21 |
+
text-align: center;
|
22 |
+
}
|
23 |
+
.subtitle {
|
24 |
+
color: #555;
|
25 |
+
font-size: 20px;
|
26 |
+
text-align: center;
|
27 |
+
}
|
28 |
+
.upload-container {
|
29 |
+
background-color: #fff;
|
30 |
+
padding: 20px;
|
31 |
+
border-radius: 10px;
|
32 |
+
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
|
33 |
+
margin-bottom: 20px;
|
34 |
+
}
|
35 |
+
.predict-btn {
|
36 |
+
background-color: #4CAF50;
|
37 |
+
color: white;
|
38 |
+
padding: 10px 20px;
|
39 |
+
border-radius: 5px;
|
40 |
+
font-size: 18px;
|
41 |
+
width: 100%;
|
42 |
+
cursor: pointer;
|
43 |
+
}
|
44 |
+
.predict-btn:hover {
|
45 |
+
background-color: #45a049;
|
46 |
+
}
|
47 |
+
.stImage {
|
48 |
+
border-radius: 15px;
|
49 |
+
}
|
50 |
+
</style>
|
51 |
+
""", unsafe_allow_html=True)
|
52 |
+
|
53 |
+
# Set title and subtitle
|
54 |
+
st.markdown('<div class="title">Blood Component Detection</div>', unsafe_allow_html=True)
|
55 |
+
st.markdown('<div class="subtitle">Detect and classify blood cells in uploaded images</div>', unsafe_allow_html=True)
|
56 |
+
|
57 |
+
# Load the YOLO model
|
58 |
+
model = YOLO('/Users/abhinavyadav/Downloads/final_best(blood_detection).pt')
|
59 |
+
|
60 |
+
# Image uploader with custom style
|
61 |
+
with st.container():
|
62 |
+
st.markdown('<div class="upload-container">', unsafe_allow_html=True)
|
63 |
+
uploaded_image = st.file_uploader("Upload Image (JPG, JPEG, PNG)", type=['jpg', 'jpeg', 'png'])
|
64 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
65 |
+
|
66 |
+
if uploaded_image is not None:
|
67 |
+
# Display the uploaded image
|
68 |
+
image = Image.open(uploaded_image)
|
69 |
+
image = image.convert("RGB")
|
70 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
71 |
+
|
72 |
+
# Prediction button
|
73 |
+
with st.container():
|
74 |
+
if st.button('Classify Image', key="predict", help="Click to start classification", use_container_width=True):
|
75 |
+
st.write("Classifying... Please wait.")
|
76 |
+
|
77 |
+
# Display a progress bar while the model processes
|
78 |
+
progress_bar = st.progress(0)
|
79 |
+
for i in range(100):
|
80 |
+
time.sleep(0.01)
|
81 |
+
progress_bar.progress(i+1)
|
82 |
+
|
83 |
+
# Convert the image for prediction
|
84 |
+
### img_array = np.array(image)
|
85 |
+
|
86 |
+
# Perform prediction with a low confidence threshold
|
87 |
+
results = model.predict(source=image, imgsz=640, conf=0.1)
|
88 |
+
|
89 |
+
# Display results
|
90 |
+
for result in results:
|
91 |
+
print(result.boxes.xyxy, result.boxes.cls, result.boxes.conf)
|
92 |
+
# Print bounding boxes, class IDs, and confidence
|
93 |
+
|
94 |
+
# Show results
|
95 |
+
for i in range (1, 25):
|
96 |
+
if len(result[0].boxes) > 0:
|
97 |
+
# Extract detection results
|
98 |
+
st.write("Bounding Boxes:", result[0].boxes.xyxy)
|
99 |
+
st.write("Class IDs:", result[0].boxes.cls)
|
100 |
+
st.write("Confidence Scores:", result[0].boxes.conf)
|
101 |
+
|
102 |
+
# Plot the results (image with bounding boxes)
|
103 |
+
output_image = result[i].plot() # This should plot bounding boxes
|
104 |
+
st.image(output_image, caption="Predicted Image with Bounding Boxes", use_container_width=True)
|
105 |
+
else:
|
106 |
+
st.write("No objects detected.")
|
107 |
+
st.write("Raw Prediction Results:", results)
|
108 |
+
st.write("Boxes:", results[0].boxes.xyxy)
|
109 |
+
st.write("Classes:", results[0].boxes.cls)
|
110 |
+
st.write("Confidences:", results[0].boxes.conf)
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|