Spaces:
Build error
Build error
File size: 2,039 Bytes
bb3e999 90e341a bb3e999 3933506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import numpy as np
import streamlit as st
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
# Load your trained model
model = load_model('eye_detection.h5')
IMG_SIZE = 224 # Resize the image to the input size of your model (e.g., 224x224)
# Streamlit App Title
st.title("ποΈ Real-Time Eye Detection")
st.write("Detect whether eyes are open or closed in real-time using your webcam.")
# Sidebar
st.sidebar.title("π§ Controls")
run = st.sidebar.checkbox("Start Webcam")
st.sidebar.write("Toggle the checkbox to start/stop the webcam.")
st.sidebar.write("Press 'Stop' to end the app.")
st.sidebar.info("Tip: Ensure your webcam is properly connected and accessible.")
# Create a container for video feed (first row)
with st.container():
st.header("πΉ Webcam Feed")
FRAME_WINDOW = st.image([])
# Create a container for status display (second row)
with st.container():
st.header("π Eye Status")
status_placeholder = st.markdown("**Status:** Waiting for webcam input...")
# Webcam input using Streamlit's camera_input widget
if run:
camera_input = st.camera_input("Capture image")
if camera_input:
# Convert the image to RGB format and resize it for prediction
img_resized = cv2.resize(camera_input, (IMG_SIZE, IMG_SIZE))
# Preprocess the image
img_array = img_to_array(img_resized) / 255.0
img_array = np.expand_dims(img_array, axis=0)
# Predict eye status
prediction = model.predict(img_array)
# Update prediction status
if prediction[0][0] > 0.8:
status = "Eye is Open π"
status_color = "green"
else:
status = "Eye is Closed π΄"
status_color = "red"
# Update UI with the prediction status
status_placeholder.markdown(f"**Status:** <span style='color:{status_color}'>{status}</span>", unsafe_allow_html=True)
# Display the webcam feed
FRAME_WINDOW.image(camera_input)
|