import numpy as np import streamlit as st import cv2 # Added import for OpenCV from PIL import Image # For image decoding from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model # Load your trained model model = load_model('eye_detection.h5') IMG_SIZE = 224 # Resize the image to the input size of your model (e.g., 224x224) # Streamlit App Title st.title("👁️ Real-Time Eye Detection") st.write("Detect whether eyes are open or closed in real-time using your webcam.") # Sidebar st.sidebar.title("🔧 Controls") run = st.sidebar.checkbox("Start Webcam") st.sidebar.write("Toggle the checkbox to start/stop the webcam.") st.sidebar.write("Press 'Stop' to end the app.") st.sidebar.info("Tip: Ensure your webcam is properly connected and accessible.") # Webcam feed and status placeholders FRAME_WINDOW = st.image([]) status_placeholder = st.markdown("**Status:** Waiting for webcam input...") if run: # Capture an image from the webcam camera_input = st.camera_input("Capture image") if camera_input: # Decode to PIL Image and convert to RGB img = Image.open(camera_input).convert('RGB') # Resize and convert to array img_resized = img.resize((IMG_SIZE, IMG_SIZE)) img_array = img_to_array(img_resized) / 255.0 img_array = np.expand_dims(img_array, axis=0) # Predict eye status prediction = model.predict(img_array) # Determine status and color if prediction[0][0] > 0.8: status = "Eye is Open 👀" status_color = "green" else: status = "Eye is Closed 😴" status_color = "red" # Update UI status_placeholder.markdown( f"**Status:** {status}", unsafe_allow_html=True ) FRAME_WINDOW.image(img) else: st.write("Webcam is stopped. Check the sidebar to start.")