Spaces:
Runtime error
Runtime error
File size: 1,633 Bytes
95877f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
device = "cpu"
weights_path = "./weights/face_generator_v2.pth"
IN_CHANNELS = 100
class FaceGenerator(nn.Module):
def __init__(self, in_channels):
super(FaceGenerator, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(in_channels, 1024, 4, 2,0, bias=False),
nn.BatchNorm2d(1024),
nn.ReLU(True), # [batch_size, 1024, 2, 2]
nn.ConvTranspose2d(1024, 512, 4, 2,1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True), # [batch_size, 512, 7, 7]
nn.ConvTranspose2d(512, 256, 4, 2,1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True), # [batch_size, 256, 14, 14]
nn.ConvTranspose2d(256, 128, 4, 2,1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True), # [batch_size, 256, 28, 28]
nn.ConvTranspose2d(128,3, 4, 2,1, bias=False),
nn.Sigmoid(), # [batch_size, 1, 32, 32]
)
def forward(self, x):
return self.main(x)
def load_model():
model = FaceGenerator(IN_CHANNELS).to(device=device)
model.load_state_dict(torch.load(weights_path, map_location=torch.device(device)), strict=True)
model = model.eval()
print("[!] Model Loaded..")
return model
def generate(model):
noise = torch.randn((1,IN_CHANNELS, 1, 1)).to(device)
image_op = model(noise).squeeze()
image_op = image_op.permute(1,2,0).detach().cpu().numpy()
image_op = image_op * 255.0
image_op = image_op.astype(np.uint8)
image_op = Image.fromarray(image_op)
image_op = image_op.resize((256, 256),resample=Image.ADAPTIVE)
return image_op
|