File size: 6,270 Bytes
b59d5de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from __future__ import annotations

import datetime
import os
import pathlib
import shlex
import shutil
import subprocess

import gradio as gr
import PIL.Image
import slugify
import torch
from huggingface_hub import HfApi
from accelerate.utils import write_basic_config


from app_upload import ModelUploader
from utils import save_model_card

URL_TO_JOIN_LIBRARY_ORG = 'https://huggingface.co/organizations/svdiff-library/share/PZBRRkosXikenXUdjMcvcoFmpWjcWnZjKL'


def pad_image(image: PIL.Image.Image) -> PIL.Image.Image:
    w, h = image.size
    if w == h:
        return image
    elif w > h:
        new_image = PIL.Image.new(image.mode, (w, w), (0, 0, 0))
        new_image.paste(image, (0, (w - h) // 2))
        return new_image
    else:
        new_image = PIL.Image.new(image.mode, (h, h), (0, 0, 0))
        new_image.paste(image, ((h - w) // 2, 0))
        return new_image


class Trainer:
    def __init__(self, hf_token: str | None = None):
        self.hf_token = hf_token
        self.api = HfApi(token=hf_token)
        self.model_uploader = ModelUploader(hf_token)

    def prepare_dataset(self, instance_images: list, resolution: int,
                        instance_data_dir: pathlib.Path) -> None:
        shutil.rmtree(instance_data_dir, ignore_errors=True)
        instance_data_dir.mkdir(parents=True)
        for i, temp_path in enumerate(instance_images):
            image = PIL.Image.open(temp_path.name)
            image = pad_image(image)
            image = image.resize((resolution, resolution))
            image = image.convert('RGB')
            out_path = instance_data_dir / f'{i:03d}.jpg'
            image.save(out_path, format='JPEG', quality=100)

    def join_library_org(self) -> None:
        subprocess.run(
            shlex.split(
                f'curl -X POST -H "Authorization: Bearer {self.hf_token}" -H "Content-Type: application/json" {URL_TO_JOIN_LIBRARY_ORG}'
            ))

    def run(
        self,
        instance_images: list | None,
        instance_prompt: str,
        output_model_name: str,
        overwrite_existing_model: bool,
        validation_prompt: str,
        base_model: str,
        resolution_s: str,
        n_steps: int,
        learning_rate: float,
        gradient_accumulation: int,
        seed: int,
        fp16: bool,
        use_8bit_adam: bool,
        gradient_checkpointing: bool,
        # enable_xformers_memory_efficient_attention: bool,
        checkpointing_steps: int,
        use_wandb: bool,
        validation_epochs: int,
        upload_to_hub: bool,
        use_private_repo: bool,
        delete_existing_repo: bool,
        upload_to: str,
        remove_gpu_after_training: bool,
    ) -> str:
        if not torch.cuda.is_available():
            raise gr.Error('CUDA is not available.')
        if instance_images is None:
            raise gr.Error('You need to upload images.')
        if not instance_prompt:
            raise gr.Error('The instance prompt is missing.')
        if not validation_prompt:
            raise gr.Error('The validation prompt is missing.')

        resolution = int(resolution_s)

        if not output_model_name:
            timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
            output_model_name = f'svdiff-pytorch-{timestamp}'
        output_model_name = slugify.slugify(output_model_name)

        repo_dir = pathlib.Path(__file__).parent
        output_dir = repo_dir / 'experiments' / output_model_name
        if overwrite_existing_model or upload_to_hub:
            shutil.rmtree(output_dir, ignore_errors=True)
        output_dir.mkdir(parents=True)

        instance_data_dir = repo_dir / 'training_data' / output_model_name
        self.prepare_dataset(instance_images, resolution, instance_data_dir)

        if upload_to_hub:
            self.join_library_org()
        # accelerate config 
        write_basic_config()
        command = f'''
        accelerate launch train_svdiff.py \
          --pretrained_model_name_or_path={base_model}  \
          --instance_data_dir={instance_data_dir} \
          --output_dir={output_dir} \
          --instance_prompt="{instance_prompt}" \
          --resolution={resolution} \
          --train_batch_size=1 \
          --gradient_accumulation_steps={gradient_accumulation} \
          --learning_rate={learning_rate} \
          --lr_scheduler=constant \
          --lr_warmup_steps=0 \
          --max_train_steps={n_steps} \
          --checkpointing_steps={checkpointing_steps} \
          --validation_prompt="{validation_prompt}" \
          --validation_epochs={validation_epochs} \
          --seed={seed}
        '''
        if fp16:
            command += ' --mixed_precision="fp16"'
        if use_8bit_adam:
            command += ' --use_8bit_adam'
        if gradient_checkpointing:
            command += ' --gradient_checkpointing'
        # if enable_xformers_memory_efficient_attention:
        #     command += ' --enable_xformers_memory_efficient_attention'
        if use_wandb:
            command += ' --report_to wandb'

        with open(output_dir / 'train.sh', 'w') as f:
            command_s = ' '.join(command.split())
            f.write(command_s)
        subprocess.run(shlex.split(command))
        save_model_card(save_dir=output_dir,
                        base_model=base_model,
                        instance_prompt=instance_prompt,
                        test_prompt=validation_prompt,
                        test_image_dir='test_images')
        
        message = 'Training completed!'
        print(message)

        if upload_to_hub:
            upload_message = self.model_uploader.upload_model(
                folder_path=output_dir.as_posix(),
                repo_name=output_model_name,
                upload_to=upload_to,
                private=use_private_repo,
                delete_existing_repo=delete_existing_repo)
            print(upload_message)
            message = message + '\n' + upload_message

        if remove_gpu_after_training:
            space_id = os.getenv('SPACE_ID')
            if space_id:
                self.api.request_space_hardware(repo_id=space_id,
                                                hardware='cpu-basic')

        return message