Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import gc | |
import pathlib | |
import gradio as gr | |
import PIL.Image | |
import torch | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
from huggingface_hub import ModelCard | |
from svdiff_pytorch import load_unet_for_svdiff, SCHEDULER_MAPPING, image_grid | |
class InferencePipeline: | |
def __init__(self, hf_token: str | None = None): | |
self.hf_token = hf_token | |
self.pipe = None | |
self.device = torch.device( | |
'cuda:0' if torch.cuda.is_available() else 'cpu') | |
self.model_id = None | |
self.base_model_id = None | |
def clear(self) -> None: | |
self.model_id = None | |
self.base_model_id = None | |
del self.pipe | |
self.pipe = None | |
torch.cuda.empty_cache() | |
gc.collect() | |
def check_if_model_is_local(model_id: str) -> bool: | |
return pathlib.Path(model_id).exists() | |
def get_model_card(model_id: str, | |
hf_token: str | None = None) -> ModelCard: | |
if InferencePipeline.check_if_model_is_local(model_id): | |
card_path = (pathlib.Path(model_id) / 'README.md').as_posix() | |
else: | |
card_path = model_id | |
return ModelCard.load(card_path, token=hf_token) | |
def get_base_model_info(model_id: str, | |
hf_token: str | None = None) -> str: | |
card = InferencePipeline.get_model_card(model_id, hf_token) | |
return card.data.base_model | |
def load_pipe(self, model_id: str) -> None: | |
if model_id == self.model_id: | |
return | |
base_model_id = self.get_base_model_info(model_id, self.hf_token) | |
unet = load_unet_for_svdiff(base_model_id, spectral_shifts_ckpt=model_id, subfolder="unet").to(self.device) | |
# first perform svd and cache | |
for module in unet.modules(): | |
if hasattr(module, "perform_svd"): | |
module.perform_svd() | |
unet = unet.to(self.device, dtype=torch.float16) | |
if base_model_id != self.base_model_id: | |
if self.device.type == 'cpu': | |
pipe = DiffusionPipeline.from_pretrained( | |
base_model_id, | |
unet=unet, | |
use_auth_token=self.hf_token | |
) | |
else: | |
pipe = DiffusionPipeline.from_pretrained( | |
base_model_id, | |
unet=unet, | |
torch_dtype=torch.float16, | |
use_auth_token=self.hf_token | |
) | |
pipe = pipe.to(self.device) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
self.pipe = pipe | |
self.model_id = model_id # type: ignore | |
self.base_model_id = base_model_id # type: ignore | |
def run( | |
self, | |
model_id: str, | |
prompt: str, | |
seed: int, | |
n_steps: int, | |
guidance_scale: float, | |
) -> PIL.Image.Image: | |
# if not torch.cuda.is_available(): | |
# raise gr.Error('CUDA is not available.') | |
self.load_pipe(model_id) | |
generator = torch.Generator(device=self.device).manual_seed(seed) | |
out = self.pipe( | |
prompt, | |
num_inference_steps=n_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
) # type: ignore | |
return out.images[0] | |