Spaces:
Running
Running
Commit
·
05bf773
1
Parent(s):
b4b3464
Refactor main.py to remove unused import and disable JIT
Browse files- app/main.py +1 -3
- app/services/audio_deepfake_service.py +35 -19
- app/utils/forgery_video_utils.py +69 -28
app/main.py
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
|
2 |
-
from fastapi import FastAPI, Request
|
3 |
from fastapi.responses import JSONResponse
|
4 |
from app.api.routes import router
|
5 |
from app.core.logging_config import configure_logging
|
6 |
from app.core.firebase_config import initialize_firebase
|
7 |
from app.api.forgery_routes import router as forgery_router
|
8 |
import logging
|
9 |
-
import numba
|
10 |
-
numba.config.DISABLE_JIT = True
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
|
|
1 |
|
2 |
+
from fastapi import FastAPI, Request
|
3 |
from fastapi.responses import JSONResponse
|
4 |
from app.api.routes import router
|
5 |
from app.core.logging_config import configure_logging
|
6 |
from app.core.firebase_config import initialize_firebase
|
7 |
from app.api.forgery_routes import router as forgery_router
|
8 |
import logging
|
|
|
|
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
app/services/audio_deepfake_service.py
CHANGED
@@ -1,6 +1,8 @@
|
|
|
|
1 |
import numpy as np
|
2 |
import librosa as lb
|
3 |
from tensorflow.keras.models import load_model
|
|
|
4 |
from app.utils.file_utils import get_file_content
|
5 |
import io
|
6 |
import logging
|
@@ -13,34 +15,47 @@ class AudioDeepfakeService:
|
|
13 |
|
14 |
def create_mel_spectrogram_sample(self, audio_content, sr=22050, sample_time=1.5, n_mels=64):
|
15 |
logging.info("Creating mel spectrogram sample")
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def detect_deepfake(self, firebase_filename):
|
33 |
logging.info(f"Detecting deepfake for audio file: {firebase_filename}")
|
34 |
try:
|
35 |
audio_content = get_file_content(firebase_filename)
|
36 |
-
logging.info("Audio content retrieved successfully")
|
|
|
37 |
sample = self.create_mel_spectrogram_sample(audio_content)
|
|
|
|
|
|
|
|
|
38 |
logging.info("Mel spectrogram sample created")
|
39 |
prediction = self.model.predict(np.expand_dims(sample, axis=0))[0][0]
|
40 |
logging.info(f"Raw prediction: {prediction}")
|
41 |
|
42 |
-
|
43 |
-
confidence = prediction if
|
|
|
|
|
44 |
|
45 |
result_dict = {
|
46 |
"prediction": result,
|
@@ -52,4 +67,5 @@ class AudioDeepfakeService:
|
|
52 |
|
53 |
except Exception as e:
|
54 |
logging.error(f"Error processing audio: {str(e)}")
|
55 |
-
|
|
|
|
1 |
+
|
2 |
import numpy as np
|
3 |
import librosa as lb
|
4 |
from tensorflow.keras.models import load_model
|
5 |
+
import traceback
|
6 |
from app.utils.file_utils import get_file_content
|
7 |
import io
|
8 |
import logging
|
|
|
15 |
|
16 |
def create_mel_spectrogram_sample(self, audio_content, sr=22050, sample_time=1.5, n_mels=64):
|
17 |
logging.info("Creating mel spectrogram sample")
|
18 |
+
try:
|
19 |
+
y, sr = lb.load(io.BytesIO(audio_content), sr=sr)
|
20 |
+
logging.info(f"Audio loaded with sample rate: {sr}, length: {len(y)}")
|
21 |
+
|
22 |
+
sample_length = int(sr * sample_time)
|
23 |
+
if len(y) < sample_length:
|
24 |
+
logging.warning(f"Audio file is too short. Padding from {len(y)} to {sample_length}")
|
25 |
+
y = np.pad(y, (0, sample_length - len(y)), mode='constant')
|
26 |
+
|
27 |
+
start = 0
|
28 |
+
end = start + sample_length
|
29 |
+
m = lb.feature.melspectrogram(y=y[start:end], sr=sr, n_mels=n_mels)
|
30 |
+
m = np.abs(m)
|
31 |
+
m = lb.power_to_db(m, ref=np.max) # Convert to dB scale
|
32 |
+
m = (m - m.min()) / (m.max() - m.min()) # Normalize to [0, 1]
|
33 |
+
logging.info("Mel spectrogram sample created successfully")
|
34 |
+
return np.expand_dims(m, axis=-1)
|
35 |
+
except Exception as e:
|
36 |
+
logging.error(f"Error creating mel spectrogram: {str(e)}")
|
37 |
+
logging.error(traceback.format_exc())
|
38 |
+
return None
|
39 |
|
40 |
def detect_deepfake(self, firebase_filename):
|
41 |
logging.info(f"Detecting deepfake for audio file: {firebase_filename}")
|
42 |
try:
|
43 |
audio_content = get_file_content(firebase_filename)
|
44 |
+
logging.info(f"Audio content retrieved successfully, size: {len(audio_content)} bytes")
|
45 |
+
|
46 |
sample = self.create_mel_spectrogram_sample(audio_content)
|
47 |
+
if sample is None:
|
48 |
+
logging.error("Failed to create mel spectrogram sample")
|
49 |
+
return {"prediction": "Error", "confidence": 0.0, "raw_prediction": 0.0}
|
50 |
+
|
51 |
logging.info("Mel spectrogram sample created")
|
52 |
prediction = self.model.predict(np.expand_dims(sample, axis=0))[0][0]
|
53 |
logging.info(f"Raw prediction: {prediction}")
|
54 |
|
55 |
+
is_fake = prediction > 0.5
|
56 |
+
confidence = prediction if is_fake else 1 - prediction
|
57 |
+
|
58 |
+
result = "Fake" if is_fake else "Real"
|
59 |
|
60 |
result_dict = {
|
61 |
"prediction": result,
|
|
|
67 |
|
68 |
except Exception as e:
|
69 |
logging.error(f"Error processing audio: {str(e)}")
|
70 |
+
logging.error(traceback.format_exc())
|
71 |
+
return {"prediction": "Error", "confidence": 0.0, "raw_prediction": 0.0}
|
app/utils/forgery_video_utils.py
CHANGED
@@ -2,10 +2,12 @@ import av
|
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
import io
|
|
|
5 |
from app.utils.file_utils import get_file_content, upload_file_to_firebase, remove_temp_file
|
6 |
import logging
|
7 |
import uuid
|
8 |
from typing import List, Tuple
|
|
|
9 |
|
10 |
async def extract_audio(firebase_filename: str) -> str:
|
11 |
try:
|
@@ -17,28 +19,72 @@ async def extract_audio(firebase_filename: str) -> str:
|
|
17 |
logging.warning(f"No audio stream found in {firebase_filename}")
|
18 |
return None
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
output_stream = output_container.add_stream('pcm_s16le', rate=audio_stream.rate)
|
22 |
|
|
|
23 |
for frame in input_container.decode(audio_stream):
|
|
|
24 |
for packet in output_stream.encode(frame):
|
25 |
output_container.mux(packet)
|
26 |
|
|
|
|
|
27 |
# Flush the stream
|
28 |
for packet in output_stream.encode(None):
|
29 |
output_container.mux(packet)
|
30 |
|
31 |
output_container.close()
|
32 |
|
33 |
-
audio_content =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
audio_filename = f"{firebase_filename}_audio.wav"
|
35 |
await upload_file_to_firebase(audio_content, audio_filename)
|
36 |
|
|
|
37 |
return audio_filename
|
38 |
except Exception as e:
|
39 |
logging.error(f"Error extracting audio: {str(e)}")
|
|
|
40 |
return None
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
async def extract_frames(firebase_filename: str, max_frames: int = 10) -> List[str]:
|
43 |
frames = []
|
44 |
video_content = get_file_content(firebase_filename)
|
@@ -69,17 +115,6 @@ async def extract_frames(firebase_filename: str, max_frames: int = 10) -> List[s
|
|
69 |
|
70 |
return frames
|
71 |
|
72 |
-
import av
|
73 |
-
import numpy as np
|
74 |
-
from PIL import Image
|
75 |
-
import io
|
76 |
-
from app.utils.file_utils import get_file_content, upload_file_to_firebase, remove_temp_file
|
77 |
-
import logging
|
78 |
-
import uuid
|
79 |
-
from typing import List, Tuple
|
80 |
-
|
81 |
-
# ... (previous functions remain unchanged)
|
82 |
-
|
83 |
async def compress_and_process_video(firebase_filename: str, target_size_mb: int = 50, max_duration: int = 60) -> str:
|
84 |
video_content = get_file_content(firebase_filename)
|
85 |
|
@@ -120,21 +155,25 @@ async def compress_and_process_video(firebase_filename: str, target_size_mb: int
|
|
120 |
|
121 |
if audio_stream:
|
122 |
output_audio_stream = output_container.add_stream('aac', rate=audio_stream.rate)
|
123 |
-
output_audio_stream.bit_rate = 128000 # 128k bitrate for audio
|
124 |
-
|
125 |
-
for
|
126 |
-
if
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
138 |
|
139 |
# Flush streams
|
140 |
for packet in output_video_stream.encode(None):
|
@@ -151,8 +190,10 @@ async def compress_and_process_video(firebase_filename: str, target_size_mb: int
|
|
151 |
output_filename = f"{firebase_filename}_compressed.mp4"
|
152 |
await upload_file_to_firebase(compressed_content, output_filename)
|
153 |
|
|
|
154 |
return output_filename
|
155 |
|
156 |
except Exception as e:
|
157 |
logging.error(f"Error compressing and processing video: {str(e)}")
|
|
|
158 |
raise
|
|
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
import io
|
5 |
+
import traceback
|
6 |
from app.utils.file_utils import get_file_content, upload_file_to_firebase, remove_temp_file
|
7 |
import logging
|
8 |
import uuid
|
9 |
from typing import List, Tuple
|
10 |
+
import librosa
|
11 |
|
12 |
async def extract_audio(firebase_filename: str) -> str:
|
13 |
try:
|
|
|
19 |
logging.warning(f"No audio stream found in {firebase_filename}")
|
20 |
return None
|
21 |
|
22 |
+
logging.info(f"Audio stream found: {audio_stream}")
|
23 |
+
logging.info(f"Audio codec: {audio_stream.codec_context.name}")
|
24 |
+
logging.info(f"Audio sample rate: {audio_stream.rate}")
|
25 |
+
logging.info(f"Audio bit rate: {audio_stream.bit_rate}")
|
26 |
+
|
27 |
+
output_buffer = io.BytesIO()
|
28 |
+
output_container = av.open(output_buffer, mode='w', format='wav')
|
29 |
output_stream = output_container.add_stream('pcm_s16le', rate=audio_stream.rate)
|
30 |
|
31 |
+
frame_count = 0
|
32 |
for frame in input_container.decode(audio_stream):
|
33 |
+
frame_count += 1
|
34 |
for packet in output_stream.encode(frame):
|
35 |
output_container.mux(packet)
|
36 |
|
37 |
+
logging.info(f"Processed {frame_count} audio frames")
|
38 |
+
|
39 |
# Flush the stream
|
40 |
for packet in output_stream.encode(None):
|
41 |
output_container.mux(packet)
|
42 |
|
43 |
output_container.close()
|
44 |
|
45 |
+
audio_content = output_buffer.getvalue()
|
46 |
+
audio_size = len(audio_content)
|
47 |
+
logging.info(f"Extracted audio size: {audio_size} bytes")
|
48 |
+
|
49 |
+
if audio_size < 1024: # Check if audio content is too small (less than 1KB)
|
50 |
+
logging.warning(f"Extracted audio is too short for {firebase_filename}")
|
51 |
+
return None
|
52 |
+
|
53 |
audio_filename = f"{firebase_filename}_audio.wav"
|
54 |
await upload_file_to_firebase(audio_content, audio_filename)
|
55 |
|
56 |
+
logging.info(f"Audio extracted and uploaded: {audio_filename}")
|
57 |
return audio_filename
|
58 |
except Exception as e:
|
59 |
logging.error(f"Error extracting audio: {str(e)}")
|
60 |
+
logging.error(traceback.format_exc())
|
61 |
return None
|
62 |
|
63 |
+
def detect_speech(audio_content: bytes) -> bool:
|
64 |
+
try:
|
65 |
+
y, sr = librosa.load(io.BytesIO(audio_content), sr=None)
|
66 |
+
logging.info(f"Loaded audio with sample rate: {sr}, length: {len(y)}")
|
67 |
+
|
68 |
+
# Calculate the root mean square energy
|
69 |
+
rms = librosa.feature.rms(y=y)[0]
|
70 |
+
|
71 |
+
# Calculate the percentage of frames with energy above a threshold
|
72 |
+
threshold = 0.01 # Adjust this value based on your needs
|
73 |
+
speech_frames = np.sum(rms > threshold)
|
74 |
+
speech_percentage = speech_frames / len(rms)
|
75 |
+
|
76 |
+
logging.info(f"Speech detection: {speech_percentage:.2%} of frames above threshold")
|
77 |
+
|
78 |
+
# If more than 10% of frames have energy above the threshold, consider it speech
|
79 |
+
is_speech = speech_percentage > 0.1
|
80 |
+
logging.info(f"Speech detected: {is_speech}")
|
81 |
+
|
82 |
+
return is_speech
|
83 |
+
except Exception as e:
|
84 |
+
logging.error(f"Error detecting speech: {str(e)}")
|
85 |
+
logging.error(traceback.format_exc())
|
86 |
+
return False
|
87 |
+
|
88 |
async def extract_frames(firebase_filename: str, max_frames: int = 10) -> List[str]:
|
89 |
frames = []
|
90 |
video_content = get_file_content(firebase_filename)
|
|
|
115 |
|
116 |
return frames
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
async def compress_and_process_video(firebase_filename: str, target_size_mb: int = 50, max_duration: int = 60) -> str:
|
119 |
video_content = get_file_content(firebase_filename)
|
120 |
|
|
|
155 |
|
156 |
if audio_stream:
|
157 |
output_audio_stream = output_container.add_stream('aac', rate=audio_stream.rate)
|
158 |
+
output_audio_stream.bit_rate = min(128000, audio_stream.bit_rate or 128000) # 128k bitrate for audio, or lower if original is lower
|
159 |
+
|
160 |
+
for packet in input_container.demux((video_stream, audio_stream) if audio_stream else (video_stream,)):
|
161 |
+
if packet.dts is None:
|
162 |
+
continue
|
163 |
+
|
164 |
+
if packet.stream.type == 'video':
|
165 |
+
for frame in packet.decode():
|
166 |
+
if frame.time > duration:
|
167 |
+
break
|
168 |
+
new_frame = frame.reformat(width=new_width, height=new_height, format='yuv420p')
|
169 |
+
for packet in output_video_stream.encode(new_frame):
|
170 |
+
output_container.mux(packet)
|
171 |
+
elif packet.stream.type == 'audio' and audio_stream:
|
172 |
+
for frame in packet.decode():
|
173 |
+
if frame.time > duration:
|
174 |
+
break
|
175 |
+
for packet in output_audio_stream.encode(frame):
|
176 |
+
output_container.mux(packet)
|
177 |
|
178 |
# Flush streams
|
179 |
for packet in output_video_stream.encode(None):
|
|
|
190 |
output_filename = f"{firebase_filename}_compressed.mp4"
|
191 |
await upload_file_to_firebase(compressed_content, output_filename)
|
192 |
|
193 |
+
logging.info(f"Compressed video uploaded to Firebase: {output_filename}")
|
194 |
return output_filename
|
195 |
|
196 |
except Exception as e:
|
197 |
logging.error(f"Error compressing and processing video: {str(e)}")
|
198 |
+
logging.error(traceback.format_exc())
|
199 |
raise
|