Spaces:
Running
Running
Commit
·
be986b5
1
Parent(s):
8487406
Refactor face manipulation detection in forgery_routes.py and improve error handling in forgery_image_utils.py
Browse files
app/api/forgery_routes.py
CHANGED
@@ -84,7 +84,10 @@ async def process_image(firebase_filename: str):
|
|
84 |
results["face_manipulation"] = face_manipulation_service.detect_manipulation(firebase_filename)
|
85 |
logging.info(f"Face manipulation detection result: {results['face_manipulation']}")
|
86 |
else:
|
87 |
-
results["face_manipulation"] =
|
|
|
|
|
|
|
88 |
logging.info("Face manipulation detection skipped (no face detected)")
|
89 |
logging.info(f"Image processing completed for: {firebase_filename}")
|
90 |
return results
|
@@ -132,7 +135,10 @@ async def process_video(firebase_filename: str):
|
|
132 |
"collective_detection": False,
|
133 |
"collective_confidence": 0.0
|
134 |
},
|
135 |
-
"face_manipulation":
|
|
|
|
|
|
|
136 |
"gan_detection": {
|
137 |
"collective_detection": False,
|
138 |
"collective_confidence": 0.0
|
|
|
84 |
results["face_manipulation"] = face_manipulation_service.detect_manipulation(firebase_filename)
|
85 |
logging.info(f"Face manipulation detection result: {results['face_manipulation']}")
|
86 |
else:
|
87 |
+
results["face_manipulation"] = {
|
88 |
+
"is_manipulated": False,
|
89 |
+
"confidence": "0%"
|
90 |
+
}
|
91 |
logging.info("Face manipulation detection skipped (no face detected)")
|
92 |
logging.info(f"Image processing completed for: {firebase_filename}")
|
93 |
return results
|
|
|
135 |
"collective_detection": False,
|
136 |
"collective_confidence": 0.0
|
137 |
},
|
138 |
+
"face_manipulation": {
|
139 |
+
"collective_detection": False,
|
140 |
+
"collective_confidence": 0.0
|
141 |
+
},
|
142 |
"gan_detection": {
|
143 |
"collective_detection": False,
|
144 |
"collective_confidence": 0.0
|
app/utils/forgery_image_utils.py
CHANGED
@@ -4,11 +4,44 @@ from typing import Union
|
|
4 |
from PIL import Image
|
5 |
from io import BytesIO
|
6 |
import imghdr
|
|
|
|
|
7 |
from fastapi import HTTPException
|
|
|
8 |
from app.utils.file_utils import get_file_content
|
|
|
9 |
|
10 |
SUPPORTED_IMAGE_FORMATS = ['.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff', '.webp']
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def verify_image_format(firebase_filename: str):
|
13 |
content = get_file_content(firebase_filename)
|
14 |
file_ext = '.' + (imghdr.what(BytesIO(content)) or '')
|
@@ -38,19 +71,29 @@ def strip_metadata(img: Image.Image) -> Image.Image:
|
|
38 |
img_without_exif.putdata(data)
|
39 |
return img_without_exif
|
40 |
|
41 |
-
def detect_face(
|
42 |
"""
|
43 |
Enhanced face detection using cascaded classifiers.
|
44 |
Args:
|
45 |
-
|
46 |
Returns:
|
47 |
bool: True if any faces are detected, False otherwise
|
48 |
"""
|
49 |
try:
|
50 |
-
#
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
if img is None:
|
|
|
54 |
return False
|
55 |
|
56 |
# Convert to grayscale
|
@@ -60,40 +103,20 @@ def detect_face(image_content: bytes) -> bool:
|
|
60 |
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
61 |
enhanced_gray = clahe.apply(gray)
|
62 |
|
63 |
-
# Try
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
# Try alternate frontal face classifier
|
76 |
-
alt_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_alt2.xml')
|
77 |
-
faces = alt_cascade.detectMultiScale(
|
78 |
-
enhanced_gray,
|
79 |
-
scaleFactor=1.15,
|
80 |
-
minNeighbors=3,
|
81 |
-
minSize=(30, 30)
|
82 |
-
)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
profile_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_profileface.xml')
|
89 |
-
faces = profile_cascade.detectMultiScale(
|
90 |
-
enhanced_gray,
|
91 |
-
scaleFactor=1.1,
|
92 |
-
minNeighbors=3,
|
93 |
-
minSize=(30, 30)
|
94 |
-
)
|
95 |
-
|
96 |
-
return len(faces) > 0
|
97 |
-
|
98 |
-
except Exception:
|
99 |
return False
|
|
|
4 |
from PIL import Image
|
5 |
from io import BytesIO
|
6 |
import imghdr
|
7 |
+
import cv2
|
8 |
+
import os
|
9 |
from fastapi import HTTPException
|
10 |
+
import io
|
11 |
from app.utils.file_utils import get_file_content
|
12 |
+
import logging
|
13 |
|
14 |
SUPPORTED_IMAGE_FORMATS = ['.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff', '.webp']
|
15 |
|
16 |
+
# Set up logging
|
17 |
+
logging.basicConfig(level=logging.INFO)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
# Define the paths to the XML files
|
21 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
22 |
+
project_root = os.path.dirname(os.path.dirname(current_dir))
|
23 |
+
xml_paths = {
|
24 |
+
'frontal': os.path.join(project_root, 'models', 'haarcascade_frontalface_default.xml'),
|
25 |
+
'frontal_alt': os.path.join(project_root, 'models', 'haarcascade_frontalface_alt2.xml'),
|
26 |
+
'profile': os.path.join(project_root, 'models', 'haarcascade_profileface.xml')
|
27 |
+
}
|
28 |
+
|
29 |
+
# Try to load the pre-trained face detection models
|
30 |
+
face_cascades = {}
|
31 |
+
for name, path in xml_paths.items():
|
32 |
+
try:
|
33 |
+
if not os.path.exists(path):
|
34 |
+
logger.error(f"Error: XML file not found at {path}")
|
35 |
+
continue
|
36 |
+
cascade = cv2.CascadeClassifier(path)
|
37 |
+
if cascade.empty():
|
38 |
+
logger.error(f"Error: Unable to load the cascade classifier. XML file is empty or invalid: {path}")
|
39 |
+
else:
|
40 |
+
face_cascades[name] = cascade
|
41 |
+
logger.info(f"Successfully loaded face detection model from: {path}")
|
42 |
+
except Exception as e:
|
43 |
+
logger.error(f"Error loading face detection model {name}: {str(e)}")
|
44 |
+
|
45 |
def verify_image_format(firebase_filename: str):
|
46 |
content = get_file_content(firebase_filename)
|
47 |
file_ext = '.' + (imghdr.what(BytesIO(content)) or '')
|
|
|
71 |
img_without_exif.putdata(data)
|
72 |
return img_without_exif
|
73 |
|
74 |
+
def detect_face(image_input) -> bool:
|
75 |
"""
|
76 |
Enhanced face detection using cascaded classifiers.
|
77 |
Args:
|
78 |
+
image_input: Either raw image bytes or a filename
|
79 |
Returns:
|
80 |
bool: True if any faces are detected, False otherwise
|
81 |
"""
|
82 |
try:
|
83 |
+
# Determine if the input is bytes or a filename
|
84 |
+
if isinstance(image_input, bytes):
|
85 |
+
# Decode image from bytes
|
86 |
+
nparr = np.frombuffer(image_input, np.uint8)
|
87 |
+
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
88 |
+
elif isinstance(image_input, str):
|
89 |
+
# Read image from file
|
90 |
+
img = cv2.imread(image_input)
|
91 |
+
else:
|
92 |
+
logger.error("Invalid input type for detect_face")
|
93 |
+
return False
|
94 |
+
|
95 |
if img is None:
|
96 |
+
logger.error("Failed to load image in detect_face")
|
97 |
return False
|
98 |
|
99 |
# Convert to grayscale
|
|
|
103 |
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
104 |
enhanced_gray = clahe.apply(gray)
|
105 |
|
106 |
+
# Try each cascade classifier
|
107 |
+
for name, cascade in face_cascades.items():
|
108 |
+
faces = cascade.detectMultiScale(
|
109 |
+
enhanced_gray,
|
110 |
+
scaleFactor=1.1,
|
111 |
+
minNeighbors=4,
|
112 |
+
minSize=(30, 30)
|
113 |
+
)
|
114 |
+
if len(faces) > 0:
|
115 |
+
logger.info(f"Face detected using {name} classifier")
|
116 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
logger.info("No face detected")
|
119 |
+
return False
|
120 |
+
except Exception as e:
|
121 |
+
logger.error(f"Error in detect_face: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
return False
|
models/haarcascade_frontalface_alt2.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/haarcascade_frontalface_default.xml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from fastapi import FastAPI, HTTPException
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
# Load the pre-trained face detection model
|
11 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
12 |
+
|
13 |
+
def detect_face(image):
|
14 |
+
# Convert image to grayscale
|
15 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
16 |
+
|
17 |
+
# Detect faces
|
18 |
+
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
19 |
+
|
20 |
+
return len(faces) > 0
|
21 |
+
|
22 |
+
@app.get("/detect_face/")
|
23 |
+
async def detect_face_in_url(image_url: str):
|
24 |
+
try:
|
25 |
+
# Download the image from the URL
|
26 |
+
response = requests.get(image_url)
|
27 |
+
image = Image.open(BytesIO(response.content))
|
28 |
+
|
29 |
+
# Convert PIL Image to OpenCV format
|
30 |
+
opencv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
31 |
+
|
32 |
+
# Perform face detection
|
33 |
+
face_detected = detect_face(opencv_image)
|
34 |
+
|
35 |
+
return {"face_detected": face_detected}
|
36 |
+
except Exception as e:
|
37 |
+
raise HTTPException(status_code=400, detail=str(e))
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
import uvicorn
|
41 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
models/haarcascade_profileface.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|