New
Browse files
app.py
CHANGED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import yfinance as yf
|
5 |
+
from prophet import Prophet
|
6 |
+
from prophet.plot import plot_plotly, plot_components_plotly
|
7 |
+
|
8 |
+
|
9 |
+
import warnings
|
10 |
+
warnings.simplefilter(action='ignore', category=FutureWarning)
|
11 |
+
|
12 |
+
|
13 |
+
stocks = pd.read_excel('Stocks.xlsx', usecols =[1,2,3])
|
14 |
+
|
15 |
+
period_options = {
|
16 |
+
"1wk": "1 Week",
|
17 |
+
"1mo": "1 Month",
|
18 |
+
"1y": "1 Year",
|
19 |
+
"5y": "5 Years"
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
# Create a Gradio radio button group for the period
|
24 |
+
period = gr.Radio(label="Training Period: ", choices=list(period_options.values()), value="1 Week")
|
25 |
+
|
26 |
+
|
27 |
+
# Define the function to return the symbol corresponding to the selected company name
|
28 |
+
def get_forecast(company_name):
|
29 |
+
symbol_nse = stocks[stocks['Company Name'] == company_name]['Symbol'].values[0] + '.NS'
|
30 |
+
#period_key = [key for key, value in period_options.items() if value == period][0]
|
31 |
+
#stock_df = yf.download(symbol_nse, period = period_key)
|
32 |
+
|
33 |
+
stock_df = yf.download(symbol_nse, period = '5y')
|
34 |
+
stock_df.drop(stock_df.columns[[0,1,2,4,5]], axis=1, inplace=True)
|
35 |
+
stock_df.reset_index(inplace=True)
|
36 |
+
stock_df.columns = ['ds', 'y']
|
37 |
+
#stock_df = stock_df[['ds', 'y', 'cap']]
|
38 |
+
|
39 |
+
#model = Prophet(growth='logistic')
|
40 |
+
model = Prophet()
|
41 |
+
model.fit(stock_df)
|
42 |
+
|
43 |
+
future = model.make_future_dataframe(periods = 7)
|
44 |
+
forecast = model.predict(future)
|
45 |
+
forecast_df = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
|
46 |
+
|
47 |
+
fig = plot_plotly(model, forecast_df)
|
48 |
+
fig.update_layout(xaxis_title="Date", yaxis_title="Price")
|
49 |
+
|
50 |
+
return fig
|
51 |
+
|
52 |
+
|
53 |
+
with gr.Blocks() as demo:
|
54 |
+
|
55 |
+
gr.Markdown(
|
56 |
+
"""
|
57 |
+
# NSE Stock Price Trend Prediction
|
58 |
+
Select the Stock from Dropdown Menu to get next week Prediction
|
59 |
+
|
60 |
+
"""
|
61 |
+
|
62 |
+
)
|
63 |
+
with gr.Row():
|
64 |
+
dropdown = gr.Dropdown(label="Company Name", choices=stocks['Company Name'].tolist(), filterable = True, info = 'Select NSE Stock')
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
None
|
69 |
+
with gr.Column():
|
70 |
+
None
|
71 |
+
with gr.Column():
|
72 |
+
None
|
73 |
+
with gr.Column():
|
74 |
+
submit_btn = gr.Button(value = "Predict")
|
75 |
+
|
76 |
+
with gr.Row():
|
77 |
+
forecast_plot = gr.Plot(label = 'Forecast Plot')
|
78 |
+
|
79 |
+
|
80 |
+
submit_btn.click(get_forecast, inputs=dropdown, outputs=forecast_plot)
|
81 |
+
|
82 |
+
|
83 |
+
demo.launch(share=True, debug=True)
|