Spaces:
Runtime error
Runtime error
File size: 32,490 Bytes
35c1cfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os,sys
import logging
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
from dataclasses import dataclass, field
from fairseq import utils
from fairseq.data.data_utils import compute_mask_indices
from fairseq.data.dictionary import Dictionary
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model
from fairseq.models.wav2vec.wav2vec2 import (
ConvFeatureExtractionModel,
TransformerEncoder,
)
from fairseq.modules import GradMultiply, LayerNorm
from copy import deepcopy
DBG=True if len(sys.argv) == 1 else False
if DBG:
from hubert_pretraining import (
AVHubertPretrainingConfig,
AVHubertPretrainingTask,
)
from resnet import ResEncoder
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
from utils import compute_mask_indices
from decoder import TransformerDecoder
else:
from .hubert_pretraining import (
AVHubertPretrainingConfig,
AVHubertPretrainingTask,
)
from .resnet import ResEncoder
from .utils import compute_mask_indices
from .decoder import TransformerDecoder
from omegaconf import II
logger = logging.getLogger(__name__)
EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"])
MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(
["static", "uniform", "normal", "poisson"]
)
# LAYER_TYPE_CHOICES = ChoiceEnum(["transformer", "conformer", "trf_adp"])
@dataclass
class AVHubertConfig(FairseqDataclass):
label_rate: int = II("task.label_rate")
input_modality: str = II("task.input_modality")
extractor_mode: EXTRACTOR_MODE_CHOICES = field(
default="default",
metadata={
"help": "mode for feature extractor. default has a single group "
"norm with d groups in the first conv block, whereas layer_norm "
"has layer norms in every block (meant to use with normalize=True)"
},
)
encoder_layers: int = field(
default=12, metadata={"help": "num encoder layers in the transformer"}
)
encoder_embed_dim: int = field(
default=768, metadata={"help": "encoder embedding dimension"}
)
encoder_ffn_embed_dim: int = field(
default=3072, metadata={"help": "encoder embedding dimension for FFN"}
)
encoder_attention_heads: int = field(
default=12, metadata={"help": "num encoder attention heads"}
)
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
default="gelu", metadata={"help": "activation function to use"}
)
# dropouts
dropout: float = field(
default=0.1,
metadata={"help": "dropout probability for the transformer"},
)
attention_dropout: float = field(
default=0.1,
metadata={"help": "dropout probability for attention weights"},
)
activation_dropout: float = field(
default=0.0,
metadata={"help": "dropout probability after activation in FFN"},
)
encoder_layerdrop: float = field(
default=0.0,
metadata={"help": "probability of dropping a tarnsformer layer"},
)
dropout_input: float = field(
default=0.0,
metadata={"help": "dropout to apply to the input (after feat extr)"},
)
dropout_features: float = field(
default=0.0,
metadata={
"help": "dropout to apply to the features (after feat extr)"
},
)
final_dim: int = field(
default=0,
metadata={
"help": "project final representations and targets to this many "
"dimensions. set to encoder_embed_dim is <= 0"
},
)
untie_final_proj: bool = field(
default=False,
metadata={"help": "use separate projection for each target"},
)
layer_norm_first: bool = field(
default=False,
metadata={"help": "apply layernorm first in the transformer"},
)
conv_feature_layers: str = field(
default="[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2",
metadata={
"help": "string describing convolutional feature extraction "
"layers in form of a python list that contains "
"[(dim, kernel_size, stride), ...]"
},
)
conv_bias: bool = field(
default=False, metadata={"help": "include bias in conv encoder"}
)
logit_temp: float = field(
default=0.1, metadata={"help": "temperature to divide logits by"}
)
target_glu: bool = field(
default=False, metadata={"help": "adds projection + glu to targets"}
)
feature_grad_mult: float = field(
default=1.0,
metadata={"help": "multiply feature extractor var grads by this"},
)
# masking
mask_length_audio: int = field(default=10, metadata={"help": "mask length"})
mask_prob_audio: float = field(
default=0.65,
metadata={"help": "probability of replacing a token with mask"},
)
mask_length_image: int = field(default=10, metadata={"help": "mask length"})
mask_prob_image: float = field(
default=0.65,
metadata={"help": "probability of replacing a token with mask"},
)
mask_selection: MASKING_DISTRIBUTION_CHOICES = field(
default="static", metadata={"help": "how to choose mask length"}
)
mask_other: float = field(
default=0,
metadata={
"help": "secondary mask argument "
"(used for more complex distributions), "
"see help in compute_mask_indicesh"
},
)
no_mask_overlap: bool = field(
default=False, metadata={"help": "whether to allow masks to overlap"}
)
mask_min_space: int = field(
default=1,
metadata={
"help": "min space between spans (if no overlap is enabled)"
},
)
# channel masking
mask_channel_length: int = field(
default=10,
metadata={"help": "length of the mask for features (channels)"},
)
mask_channel_prob: float = field(
default=0.0,
metadata={"help": "probability of replacing a feature with 0"},
)
mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field(
default="static",
metadata={"help": "how to choose mask length for channel masking"},
)
mask_channel_other: float = field(
default=0,
metadata={
"help": "secondary mask argument "
"(used for more complex distributions), "
"see help in compute_mask_indicesh"
},
)
no_mask_channel_overlap: bool = field(
default=False,
metadata={"help": "whether to allow channel masks to overlap"},
)
mask_channel_min_space: int = field(
default=1,
metadata={
"help": "min space between spans (if no overlap is enabled)"
},
)
# positional embeddings
conv_pos: int = field(
default=128,
metadata={
"help": "number of filters for convolutional positional embeddings"
},
)
conv_pos_groups: int = field(
default=16,
metadata={
"help": "number of groups for convolutional positional embedding"
},
)
latent_temp: Tuple[float, float, float] = field(
default=(2, 0.5, 0.999995),
metadata={"help": "legacy (to be removed)"},
)
# loss computation
skip_masked: bool = field(
default=False,
metadata={"help": "skip computing losses over masked frames"},
)
skip_nomask: bool = field(
default=False,
metadata={"help": "skip computing losses over unmasked frames"},
)
resnet_relu_type: str = field(default='prelu', metadata={"help": 'relu type for resnet'})
resnet_weights: Optional[str] = field(default=None, metadata={"help": 'resnet weights'})
sim_type: str = field(default='cosine', metadata={"help": 'similarity type'})
sub_encoder_layers: int = field(default=0, metadata={'help': 'number of transformer layers for single modality'})
audio_feat_dim: int = field(default=-1, metadata={'help': 'audio feature dimension'})
modality_dropout: float = field(default=0, metadata={'help': 'drop one modality'})
audio_dropout: float = field(default=0, metadata={'help': 'drop audio feature'})
modality_fuse: str = field(default='concat', metadata={'help': 'fusing two modalities: add,concat'})
selection_type : str = field(default='same_other_seq', metadata={'help': 'type of selectig images, same_other_seq: replace masked span with span from another sequence, same_seq: repace masked span with span of the same sequence'})
masking_type : str = field(default='input', metadata={'help': 'input or feature masking'})
decoder_embed_dim: int = field(
default=768, metadata={"help": "decoder embedding dimension"}
)
decoder_ffn_embed_dim: int = field(
default=3072, metadata={"help": "decoder embedding dimension for FFN"}
)
decoder_layers: int = field(
default=6, metadata={"help": "num of decoder layers"}
)
decoder_layerdrop: float = field(
default=0.0, metadata={"help": "decoder layerdrop chance"}
)
decoder_attention_heads: int = field(
default=4, metadata={"help": "num decoder attention heads"}
)
decoder_learned_pos: bool = field(
default=False,
metadata={"help": "use learned positional embeddings in the decoder"},
)
decoder_normalize_before: bool = field(
default=False,
metadata={"help": "apply layernorm before each decoder block"},
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={
"help": "if set, disables positional embeddings "
"(outside self attention)"
},
)
decoder_dropout: float = field(
default=0.1, metadata={"help": "dropout probability in the decoder"}
)
decoder_attention_dropout: float = field(
default=0.1,
metadata={
"help": "dropout probability for attention weights "
"inside the decoder"
},
)
decoder_activation_dropout: float = field(
default=0.0,
metadata={
"help": "dropout probability after activation in FFN "
"inside the decoder"
},
)
max_target_positions: int = field(
default=2048, metadata={"help": "max target positions"}
)
share_decoder_input_output_embed: bool = field(
default=False,
metadata={"help": "share decoder input and output embeddings"},
)
no_scale_embedding: bool = field(default=True, metadata={'help': 'scale embedding'})
# # new fairseq
# required_seq_len_multiple: int = field(
# default=1,
# metadata={
# "help": "pad the input to encoder such that the sequence length is divisible by multiple"
# },
# )
# layer_type: LAYER_TYPE_CHOICES = field(
# default="transformer", metadata={"help": "layer type in encoder"}
# )
class SubModel(nn.Module):
def __init__(self, resnet=None, input_dim=None, cfg=None):
super().__init__()
self.resnet = resnet
self.proj = nn.Linear(input_dim, cfg.encoder_embed_dim)
self.encoder = TransformerEncoder(cfg) if cfg.encoder_layers > 0 else None
def forward(self, x): #torch.Size([1, 1, 106, 112, 112])
if self.resnet is not None:
x = self.resnet(x) #torch.Size([1, 512, 106]) #torch.Size([12, 26, 314])
x = self.proj(x.transpose(1, 2)) #audio是 Linear(in_features=104, out_features=1024, bias=True) 太他妈扯了吧
if self.encoder is not None:
x = self.encoder(x)[0].transpose(1, 2)
else: #
x = x.transpose(1, 2)
return x #torch.Size([1, 1024, 106])
@register_model("av_hubert", dataclass=AVHubertConfig)
class AVHubertModel(BaseFairseqModel):
def __init__(
self,
cfg: AVHubertConfig,
task_cfg: AVHubertPretrainingConfig,
dictionaries: List[Dictionary],
**kwargs
) -> None:
super().__init__()
logger.info(f"HubertModel Config: {cfg}")
feature_ds_rate = 1
self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / task_cfg.sample_rate
sub_cfg = deepcopy(cfg)
sub_cfg.encoder_layers = sub_cfg.sub_encoder_layers
resnet = ResEncoder(relu_type=cfg.resnet_relu_type, weights=cfg.resnet_weights)
self.feature_extractor_audio = SubModel(resnet=None, input_dim=cfg.audio_feat_dim, cfg=sub_cfg)
self.feature_extractor_video = SubModel(resnet=resnet, input_dim=resnet.backend_out, cfg=sub_cfg)
self.modality_dropout, self.audio_dropout = cfg.modality_dropout, cfg.audio_dropout
self.modality_fuse = cfg.modality_fuse
self.encoder_embed_dim = cfg.encoder_embed_dim
if self.modality_fuse == 'concat':
self.embed = cfg.encoder_embed_dim * 2
elif self.modality_fuse == 'add':
self.embed = cfg.encoder_embed_dim
self.post_extract_proj = (
nn.Linear(self.embed, cfg.encoder_embed_dim)
if self.embed != cfg.encoder_embed_dim
else None
)
self.mask_prob_image, self.mask_prob_audio = cfg.mask_prob_image, cfg.mask_prob_audio
self.mask_selection = cfg.mask_selection
self.mask_other = cfg.mask_other
self.mask_length_image, self.mask_length_audio = cfg.mask_length_image, cfg.mask_length_audio
self.no_mask_overlap = cfg.no_mask_overlap
self.mask_min_space = cfg.mask_min_space
self.mask_channel_prob = cfg.mask_channel_prob
self.mask_channel_selection = cfg.mask_channel_selection
self.mask_channel_other = cfg.mask_channel_other
self.mask_channel_length = cfg.mask_channel_length
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
self.mask_channel_min_space = cfg.mask_channel_min_space
self.dropout_input = nn.Dropout(cfg.dropout_input)
self.dropout_features = nn.Dropout(cfg.dropout_features)
self.feature_grad_mult = cfg.feature_grad_mult
self.logit_temp = cfg.logit_temp
self.skip_masked = cfg.skip_masked
self.skip_nomask = cfg.skip_nomask
self.sim_type = cfg.sim_type
self.selection_type = cfg.selection_type
self.masking_type = cfg.masking_type
final_dim = (
cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim
)
self.mask_emb = nn.Parameter(
torch.FloatTensor(cfg.audio_feat_dim).uniform_() if self.masking_type == 'input' else torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
)
self.encoder = TransformerEncoder(cfg)
self.layer_norm = LayerNorm(self.embed)
self.target_glu = None
if cfg.target_glu:
self.target_glu = nn.Sequential(
nn.Linear(final_dim, final_dim * 2), nn.GLU()
)
self.untie_final_proj = cfg.untie_final_proj
if self.untie_final_proj:
self.final_proj = nn.Linear(
cfg.encoder_embed_dim, final_dim * len(dictionaries)
)
else:
self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim)
# modules below are not needed during fine-tuning
if any([d is None for d in dictionaries]):
logger.info(
"cannot find dictionary. assume will be used for fine-tuning"
)
else:
self.num_classes = [len(d) for d in dictionaries]
self.label_embs_concat = nn.Parameter(
torch.FloatTensor(sum(self.num_classes), final_dim)
)
nn.init.uniform_(self.label_embs_concat)
def upgrade_state_dict_named(self, state_dict, name):
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
super().upgrade_state_dict_named(state_dict, name)
return state_dict
@classmethod
def build_model(cls, cfg: AVHubertConfig, task: AVHubertPretrainingTask):
"""Build a new model instance."""
kwargs = {}
model = AVHubertModel(cfg, task.cfg, task.dictionaries, **kwargs)
return model
def apply_input_mask(self, x, padding_mask, target_list):
B, C, T = x.shape[:3]
is_audio = True if len(x.shape) == 3 else False
if is_audio:
mask_prob, mask_length = self.mask_prob_audio, self.mask_length_audio
else:
mask_prob, mask_length = self.mask_prob_image, self.mask_length_image
if mask_prob > 0:
mask_indices, starts, ends, batch_indexes = compute_mask_indices(
(B, T),
padding_mask,
mask_prob,
mask_length,
self.mask_selection,
self.mask_other,
min_masks=2,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
)
mask_indices_np = mask_indices
mask_indices = torch.from_numpy(mask_indices).to(x.device)
x = x.transpose(1, 2).contiguous() # [B, T, C, H, W]
if B == 1:
x[mask_indices] = 0
elif is_audio:
x[mask_indices] = self.mask_emb
elif self.selection_type == 'same_other_seq':
perm = (torch.arange(B) + torch.randint(low=1, high=B, size=(1,))) % B
x_perm = x[perm]
x[mask_indices] = x_perm[mask_indices]
elif self.selection_type == 'same_seq':
batch_indexes_, other_indexes = [], []
for batch_index, start, end in zip(batch_indexes, starts, ends):
length = end-start
other_start = np.setdiff1d(np.arange(T), np.arange(max(0, start-length), end))
if len(other_start) > 0:
other_start = np.random.choice(other_start, size=1)
else:
other_start = 0
other_end = other_start + length
other_indexes.append(np.arange(other_start, other_end).clip(max=T-1))
batch_indexes_.append(np.zeros([length], dtype=np.int64)+batch_index)
batch_indexes, other_indexes = np.concatenate(batch_indexes_), np.concatenate(other_indexes)
x[mask_indices] = x[batch_indexes, other_indexes]
x = x.transpose(1, 2).contiguous()
else:
mask_indices = None
if self.mask_channel_prob > 0:
logger.info(f"No mask channel prob for input masking")
return x, mask_indices
def apply_feature_mask(self, x, padding_mask, target_list):
B, T, C = x.shape
assert self.mask_prob_audio == self.mask_prob_image and self.mask_length_audio == self.mask_length_image, f"masking prob/length for image/audio be same for feature masking"
mask_prob, mask_length = self.mask_prob_audio, self.mask_length_image
if mask_prob > 0:
mask_indices, _, _, _ = compute_mask_indices(
(B, T),
padding_mask,
mask_prob,
mask_length,
self.mask_selection,
self.mask_other,
min_masks=2,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
)
mask_indices = torch.from_numpy(mask_indices).to(x.device)
x[mask_indices] = self.mask_emb
else:
mask_indices = None
if self.mask_channel_prob > 0:
mask_channel_indices, _, _, _ = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x[mask_channel_indices] = 0
return x, mask_indices
def forward_features(self, source: torch.Tensor, modality: str) -> torch.Tensor:
extractor = eval(f"self.feature_extractor_{modality}")
if self.feature_grad_mult > 0:
features = extractor(source)
if self.feature_grad_mult != 1.0:
features = GradMultiply.apply(features, self.feature_grad_mult)
else:
with torch.no_grad():
features = extractor(source)
return features
def forward_targets(
self, features: torch.Tensor, mask_indices: torch.Tensor, target_list: List[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Trim features to ensure labels exist and then get aligned labels
feat_tsz = features.size(2)
targ_tsz = min([t.size(1) for t in target_list])
if self.feat2tar_ratio * feat_tsz > targ_tsz:
feat_tsz = int(targ_tsz / self.feat2tar_ratio)
features = features[..., :feat_tsz]
if mask_indices is not None:
mask_indices = mask_indices[..., :feat_tsz]
target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio
target_list = [t[:, target_inds.long()] for t in target_list]
return features, mask_indices, target_list
def forward_padding_mask(
self, features: torch.Tensor, padding_mask: torch.Tensor,
) -> torch.Tensor:
extra = padding_mask.size(1) % features.size(1)
if extra > 0:
padding_mask = padding_mask[:, :-extra]
padding_mask = padding_mask.view(
padding_mask.size(0), features.size(1), -1
)
padding_mask = padding_mask.all(-1)
return padding_mask
def compute_logits(self, feats, emb_mat):
# feats: [B, T, F], emb_mat: [V, F]
if self.sim_type == 'dot':
logits = torch.matmul(feats, emb_mat.transpose(0, 1))
elif self.sim_type == 'cosine':
batch_size, timesteps, emb_dim = feats.size()
feats_ = feats.view(-1, emb_dim)
nom = (feats_.unsqueeze(dim=1) * emb_mat.unsqueeze(dim=0)).sum(dim=-1) # [B*T, V]
denom = (feats_**2).sum(dim=-1).sqrt().unsqueeze(dim=1) * (emb_mat**2).sum(dim=-1).sqrt().unsqueeze(dim=0) # [B*T, V]
logits = (nom/denom.clamp(min=1e-6)).view(batch_size, timesteps, -1)
else:
raise NotImplementedError
logits = logits / self.logit_temp
return logits
def forward(
self,
source: torch.Tensor,
target_list: Optional[List[torch.Tensor]] = None,
padding_mask: Optional[torch.Tensor] = None,
mask: bool = True,
features_only: bool = False,
output_layer: Optional[int] = None
) -> Dict[str, torch.Tensor]:
"""output layer is 1-based"""
src_audio, src_video = source['audio'], source['video']
if mask and self.masking_type == 'input':
src_video, mask_indices_video = self.apply_input_mask(src_video, padding_mask, target_list)
src_audio, mask_indices_audio = self.apply_input_mask(src_audio, padding_mask, target_list)
mask_indices = torch.logical_or(mask_indices_audio, mask_indices_video)
else:
src_audio, src_video, mask_indices = src_audio, src_video, None
features_audio = self.forward_features(src_audio, modality='audio') # features: [B, F, T]
features_video = self.forward_features(src_video, modality='video')
modality_drop_prob, audio_drop_prob = np.random.random(), np.random.random()
if self.training:
if modality_drop_prob < self.modality_dropout:
if audio_drop_prob < self.audio_dropout:
features_audio = 0 * features_audio
else:
features_video = 0 * features_video
if self.modality_fuse == 'concat':
features = torch.cat([features_audio, features_video], dim=1)
elif self.modality_fuse == 'add':
features = features_audio + features_video
if target_list is not None:
features, mask_indices, target_list = self.forward_targets(features, mask_indices, target_list)
features_pen = features.float().pow(2).mean()
features = features.transpose(1, 2)
features = self.layer_norm(features)
if padding_mask is not None:
padding_mask = self.forward_padding_mask(features, padding_mask)
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
features = self.dropout_input(features)
if self.masking_type == 'feature' and mask:
x, mask_indices = self.apply_feature_mask(features, padding_mask, target_list)
else:
x = features
# feature: (B, T, D), float
# target: (B, T), long
# x: (B, T, D), float
# padding_mask: (B, T), bool
# mask_indices: (B, T), bool
x, _ = self.encoder(
x,
padding_mask=padding_mask,
layer=None if output_layer is None else output_layer - 1
)
if features_only:
return {"x": x, "padding_mask": padding_mask, "features": features}
label_embs_list = self.label_embs_concat.split(self.num_classes, 0)
proj_x = self.final_proj(x)
if self.untie_final_proj:
proj_x_list = proj_x.chunk(len(self.num_classes), dim=-1)
else:
proj_x_list = [proj_x for _ in self.num_classes]
logit_list = [self.compute_logits(proj, emb).view(-1, num_class) for proj, emb, num_class in zip(proj_x_list, label_embs_list, self.num_classes)] # [[B*T, V]]
mask, unmask = torch.logical_and(mask_indices, ~padding_mask).view(-1), torch.logical_and(~mask_indices, ~padding_mask).view(-1) # [B*T]
logit_m_list, logit_u_list = [logit[mask] for logit in logit_list], [logit[unmask] for logit in logit_list]
target_m_list, target_u_list = [target.view(-1)[mask].long() for target in target_list], [target.view(-1)[unmask].long() for target in target_list]
result = {
"logit_m_list": logit_m_list,
"logit_u_list": logit_u_list,
"target_m_list": target_m_list,
"target_u_list": target_u_list,
"padding_mask": padding_mask,
"features_pen": features_pen,
}
return result
def extract_features(
self,
source: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
mask: bool = False,
ret_conv: bool = False,
output_layer: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
res = self.forward(
source,
padding_mask=padding_mask,
mask=mask,
features_only=True,
output_layer=output_layer,
)
feature = res["features"] if ret_conv else res["x"]
return feature, res["padding_mask"]
def extract_finetune(self, source, padding_mask=None, mask=False, ret_conv=False, output_layer=None):
src_audio, src_video = source['audio'], source['video'] #torch.Size([1, 1, 106, 112, 112])
if mask and self.masking_type == 'input':
src_video, mask_indices_video = self.apply_input_mask(src_video, padding_mask, target_list=None)
src_audio, mask_indices_audio = self.apply_input_mask(src_audio, padding_mask, target_list=None)
mask_indices = torch.logical_or(mask_indices_audio, mask_indices_video) # mask_indices not used in fine-tuning
else: #
src_audio, src_video, mask_indices = src_audio, src_video, None
if src_audio is not None and src_video is None:
features_audio = self.forward_features(src_audio, modality='audio') # features: [B, F, T]
features_video = features_audio.new_zeros(features_audio.size(0), self.encoder_embed_dim, features_audio.size(-1))
elif src_audio is None and src_video is not None:
features_video = self.forward_features(src_video, modality='video')
features_audio = features_video.new_zeros(features_video.size(0), self.encoder_embed_dim, features_video.size(-1)) #全0!
elif src_audio is not None and src_video is not None:
features_video = self.forward_features(src_video, modality='video') #torch.Size([1, 1024, 106]) #scr torch.Size([12, 1, 314, 88, 88])
features_audio = self.forward_features(src_audio, modality='audio') # features: [B, F, T] #torch.Size([12, 26, 314])
if self.modality_fuse == 'concat': #
features = torch.cat([features_audio, features_video], dim=1) #torch.Size([1, 2048, 106])
elif self.modality_fuse == 'add':
features = features_audio + features_video
features_pen = features.float().pow(2).mean()
features = features.transpose(1, 2)
features = self.layer_norm(features)
unmasked_features = features.clone()
if padding_mask is not None: #features:torch.Size([1, 106, 2048])
padding_mask = self.forward_padding_mask(features, padding_mask) #torch.Size([4, 154])
if self.post_extract_proj is not None:
features = self.post_extract_proj(features) #torch.Size([1, 106, 1024])
features = self.dropout_input(features)
unmasked_features = self.dropout_features(unmasked_features)
x = features
mask_indices = None
# feature: (B, T, D), float
# target: (B, T), long
# x: (B, T, D), float
# padding_mask: (B, T), bool
# mask_indices: (B, T), bool
x, _ = self.encoder(
x,
padding_mask=padding_mask,
layer=None if output_layer is None else output_layer - 1
)
return x, padding_mask #torch.Size([1, 106, 1024]), None
def get_extra_losses(self, net_output):
extra_losses = []
names = []
if "features_pen" in net_output:
extra_losses.append(net_output["features_pen"])
names.append("features_pen")
return extra_losses, names
def remove_pretraining_modules(self):
self.target_glu = None
self.final_proj = None
def get_logits(self, net_output, is_masked=True):
raise NotImplementedError
def get_targets(self, net_output, is_masked=True):
raise NotImplementedError
def compute_nce(self, x, pos, negs):
neg_is_pos = (pos == negs).all(-1)
pos = pos.unsqueeze(0)
targets = torch.cat([pos, negs], dim=0)
logits = torch.cosine_similarity(
x.float(), targets.float(), dim=-1
).type_as(x)
logits /= self.logit_temp
if neg_is_pos.any():
logits[1:][neg_is_pos] = float("-inf")
logits = logits.transpose(0, 1) # (num_x, num_cls+1)
return logits
|