File size: 22,445 Bytes
35c1cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import itertools
import logging
import os
import sys
import time
from typing import Any, List, Optional, Union

import numpy as np

import torch
import torch.nn.functional as F
from fairseq.data import data_utils
from fairseq.data.fairseq_dataset import FairseqDataset
from python_speech_features import logfbank
from scipy.io import wavfile

DBG=True if len(sys.argv) == 1 else False

if DBG:
    import utils as custom_utils
    logging.basicConfig(
        format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
        level=os.environ.get("LOGLEVEL", "DEBUG").upper(),
        stream=sys.stdout,
    )
else:
    from . import utils as custom_utils

logger = logging.getLogger(__name__)


def load_audio_visual(manifest_path, max_keep, min_keep, frame_rate, label_paths, label_rates, tol=0.1):
    def is_audio_label_aligned(audio_dur, label_durs):
        return all([abs(audio_dur - label_dur)<tol for label_dur in label_durs])

    n_long, n_short, n_unaligned = 0, 0, 0
    names, inds, sizes = [], [], []
    dur_from_label_list = []
    is_seq_label = any([x==-1 for x in label_rates])
    for label_path, label_rate in zip(label_paths, label_rates):
        label_lengths = [len(line.rstrip().split())/label_rate for line in open(label_path).readlines()]
        dur_from_label_list.append(label_lengths)
    dur_from_label_list = list(zip(*dur_from_label_list))

    with open(manifest_path) as f:
        root = f.readline().strip()
        for ind, line in enumerate(f):
            items = line.strip().split("\t")
            sz = int(items[-2]) # 
            if min_keep is not None and sz < min_keep:
                n_short += 1
            elif max_keep is not None and sz > max_keep:
                n_long += 1
            elif (not is_seq_label) and (not is_audio_label_aligned(sz/frame_rate, dur_from_label_list[ind])):
                n_unaligned += 1
            else:
                video_path = items[1]
                audio_path = items[2]
                audio_id = items[0]
                names.append((video_path, audio_path+':'+audio_id))
                inds.append(ind)
                sizes.append(sz)
    tot = ind + 1
    logger.info(
        (
            f"max_keep={max_keep}, min_keep={min_keep}, "
            f"loaded {len(names)}, skipped {n_short} short and {n_long} long and {n_unaligned} unaligned, "
            f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}"
        )
    )
    return root, names, inds, tot, sizes

def load_label(label_path, inds, tot):
    with open(label_path) as f:
        labels = [line.rstrip() for line in f]
        assert (
            len(labels) == tot
        ), f"number of labels does not match ({len(labels)} != {tot})"
        labels = [labels[i] for i in inds]
    return labels


def load_label_offset(label_path, inds, tot):
    with open(label_path) as f:
        code_lengths = [len(line.encode("utf-8")) for line in f]
        assert (
            len(code_lengths) == tot
        ), f"number of labels does not match ({len(code_lengths)} != {tot})"
        offsets = list(itertools.accumulate([0] + code_lengths))
        offsets = [(offsets[i], offsets[i + 1]) for i in inds]
    return offsets


def verify_label_lengths(

    audio_sizes,

    audio_rate,

    label_path,

    label_rate,

    inds,

    tot,

    tol=0.1,  # tolerance in seconds

):
    if label_rate < 0:
        logger.info(f"{label_path} is sequence label. skipped")
        return

    with open(label_path) as f:
        lengths = [len(line.rstrip().split()) for line in f]
        assert len(lengths) == tot
        lengths = [lengths[i] for i in inds]
    num_invalid = 0
    for i, ind in enumerate(inds):
        dur_from_audio = audio_sizes[i] / audio_rate
        dur_from_label = lengths[i] / label_rate
        if abs(dur_from_audio - dur_from_label) > tol:
            logger.warning(
                (
                    f"audio and label duration differ too much "
                    f"(|{dur_from_audio} - {dur_from_label}| > {tol}) "
                    f"in line {ind+1} of {label_path}. Check if `label_rate` "
                    f"is correctly set (currently {label_rate}). "
                    f"num. of samples = {audio_sizes[i]}; "
                    f"label length = {lengths[i]}"
                )
            )
            num_invalid += 1
    if num_invalid > 0:
        logger.warning(
            f"total {num_invalid} (audio, label) pairs with mismatched lengths"
        )


class AVHubertDataset(FairseqDataset):
    def __init__(

            self,

            manifest_path: str,

            sample_rate: float,

            label_paths: List[str],

            label_rates: Union[List[float], float],  # -1 for sequence labels

            pad_list: List[str],

            eos_list: List[str],

            label_processors: Optional[List[Any]] = None,

            max_keep_sample_size: Optional[int] = None,

            min_keep_sample_size: Optional[int] = None,

            max_sample_size: Optional[int] = None,

            shuffle: bool = True,

            pad_audio: bool = False,

            normalize: bool = False,

            store_labels: bool = True,

            random_crop: bool = False,

            single_target: bool = False,

            stack_order_audio: int=1,

            skip_verify: bool=False,

            image_mean: float=0,

            image_std: float=1,

            image_crop_size: int=88,

            image_aug: bool=False,

            modalities: Optional[List[str]]=None,

            is_s2s=False,

            noise_fn=None,

            noise_prob=0,

            noise_snr=0,

            noise_num=1

    ):
        self.label_rates = (
            [label_rates for _ in range(len(label_paths))]
            if isinstance(label_rates, int)
            else label_rates
        )
        self.modalities = set(modalities)
        self.audio_root, self.names, inds, tot, self.sizes = load_audio_visual(manifest_path, max_keep_sample_size, min_keep_sample_size, frame_rate=sample_rate, label_paths=label_paths, label_rates=self.label_rates)
        self.sample_rate = sample_rate
        self.stack_order_audio = stack_order_audio
        self.shuffle = shuffle
        self.random_crop = random_crop

        self.num_labels = len(label_paths)
        self.pad_list = pad_list
        self.eos_list = eos_list
        self.label_processors = label_processors
        self.single_target = single_target
        self.store_labels = store_labels
        self.is_s2s = is_s2s
        self.noise_wav, self.noise_prob, self.noise_snr, self.noise_num = [ln.strip() for ln in open(noise_fn).readlines()] if noise_fn is not None else [], noise_prob, noise_snr, noise_num

        assert self.single_target == (self.label_rates[0] == -1), f"single target should be equivalent to sequence label (label_rate==-1)"
        if store_labels:
            self.label_list = [load_label(p, inds, tot) for p in label_paths]
        else:
            self.label_paths = label_paths
            self.label_offsets_list = [
                load_label_offset(p, inds, tot) for p in label_paths
            ]
        assert (
            label_processors is None
            or len(label_processors) == self.num_labels
        )
        if not skip_verify:
            for label_path, label_rate in zip(label_paths, self.label_rates):
                verify_label_lengths(self.sizes, self.sample_rate, label_path, label_rate, inds, tot)
        else:
            logger.info(f"Skip label alignment verifying")

        self.max_sample_size = (
            max_sample_size if max_sample_size is not None else sys.maxsize
        )
        self.pad_audio = pad_audio
        self.normalize = normalize
        if image_aug:
            self.transform = custom_utils.Compose([
                custom_utils.Normalize( 0.0,255.0 ),
                custom_utils.RandomCrop((image_crop_size, image_crop_size)),
                custom_utils.HorizontalFlip(0.5),
                custom_utils.Normalize(image_mean, image_std) ])
        else:
            self.transform = custom_utils.Compose([
                custom_utils.Normalize( 0.0,255.0 ),
                custom_utils.CenterCrop((image_crop_size, image_crop_size)),
                custom_utils.Normalize(image_mean, image_std) ])
        logger.info(f"image transform: {self.transform}")

        logger.info(
            f"pad_audio={pad_audio}, random_crop={random_crop}, "
            f"normalize={normalize}, max_sample_size={self.max_sample_size}, "
            f"seqs2seq data={self.is_s2s},")
        logger.info(
            f"Noise wav: {noise_fn}->{len(self.noise_wav)} wav, Prob: {self.noise_prob}, SNR: {self.noise_snr}, Number of mixture: {self.noise_num}"
        )

    def get_label(self, index, label_idx):
        if self.store_labels:
            label = self.label_list[label_idx][index]
        else:
            with open(self.label_paths[label_idx]) as f:
                offset_s, offset_e = self.label_offsets_list[label_idx][index]
                f.seek(offset_s)
                label = f.read(offset_e - offset_s)

        if self.label_processors is not None:
            label = self.label_processors[label_idx](label)
        return label

    def get_labels(self, index):
        return [self.get_label(index, i) for i in range(self.num_labels)]

    def load_feature(self, mix_name):
        """

        Load image and audio feature

        Returns:

        video_feats: numpy.ndarray of shape [T, H, W, 1], audio_feats: numpy.ndarray of shape [T, F]

        """
        def stacker(feats, stack_order):
            """

            Concatenating consecutive audio frames

            Args:

            feats - numpy.ndarray of shape [T, F]

            stack_order - int (number of neighboring frames to concatenate

            Returns:

            feats - numpy.ndarray of shape [T', F']

            """
            feat_dim = feats.shape[1]
            if len(feats) % stack_order != 0:
                res = stack_order - len(feats) % stack_order
                res = np.zeros([res, feat_dim]).astype(feats.dtype)
                feats = np.concatenate([feats, res], axis=0)
            feats = feats.reshape((-1, stack_order, feat_dim)).reshape(-1, stack_order*feat_dim)
            return feats
        video_fn, audio_fn = mix_name
        if 'video' in self.modalities:
            video_feats = self.load_video(video_fn) # [T, H, W, 1]
        else:
            video_feats = None
        if 'audio' in self.modalities:
            audio_fn = audio_fn.split(':')[0]
            sample_rate, wav_data = wavfile.read(audio_fn)
            assert sample_rate == 16_000 and len(wav_data.shape) == 1
            if np.random.rand() < self.noise_prob:
                wav_data = self.add_noise(wav_data)
            audio_feats = logfbank(wav_data, samplerate=sample_rate).astype(np.float32) # [T, F]
            audio_feats = stacker(audio_feats, self.stack_order_audio) # [T/stack_order_audio, F*stack_order_audio]
        else:
            audio_feats = None
        if audio_feats is not None and video_feats is not None:
            diff = len(audio_feats) - len(video_feats)
            if diff < 0:
                audio_feats = np.concatenate([audio_feats, np.zeros([-diff, audio_feats.shape[-1]], dtype=audio_feats.dtype)])
            elif diff > 0:
                audio_feats = audio_feats[:-diff]
        return video_feats, audio_feats

    def load_video(self, audio_name):
        feats = custom_utils.load_video(os.path.join(self.audio_root, audio_name))
        feats = self.transform(feats)
        feats = np.expand_dims(feats, axis=-1)
        return feats

    def select_noise(self):
        rand_indexes = np.random.randint(0, len(self.noise_wav), size=self.noise_num)
        noise_wav = []
        for x in rand_indexes:
            noise_wav.append(wavfile.read(self.noise_wav[x])[1].astype(np.float32))
        if self.noise_num == 1:
            return noise_wav[0]
        else:
            min_len = min([len(x) for x in noise_wav])
            noise_wav = [x[:min_len] for x in noise_wav]
            noise_wav = np.floor(np.stack(noise_wav).mean(axis=0))
            return noise_wav

    def add_noise(self, clean_wav):
        clean_wav = clean_wav.astype(np.float32)
        noise_wav = self.select_noise()
        if type(self.noise_snr) == int or type(self.noise_snr) == float:
            snr = self.noise_snr
        elif type(self.noise_snr) == tuple:
            snr = np.random.randint(self.noise_snr[0], self.noise_snr[1]+1)
        clean_rms = np.sqrt(np.mean(np.square(clean_wav), axis=-1))
        if len(clean_wav) > len(noise_wav):
            ratio = int(np.ceil(len(clean_wav)/len(noise_wav)))
            noise_wav = np.concatenate([noise_wav for _ in range(ratio)])
        if len(clean_wav) < len(noise_wav):
            start = 0
            noise_wav = noise_wav[start: start + len(clean_wav)]
        noise_rms = np.sqrt(np.mean(np.square(noise_wav), axis=-1))
        adjusted_noise_rms = clean_rms / (10**(snr/20))
        adjusted_noise_wav = noise_wav * (adjusted_noise_rms / noise_rms)
        mixed = clean_wav + adjusted_noise_wav

        #Avoid clipping noise
        max_int16 = np.iinfo(np.int16).max
        min_int16 = np.iinfo(np.int16).min
        if mixed.max(axis=0) > max_int16 or mixed.min(axis=0) < min_int16:
            if mixed.max(axis=0) >= abs(mixed.min(axis=0)): 
                reduction_rate = max_int16 / mixed.max(axis=0)
            else :
                reduction_rate = min_int16 / mixed.min(axis=0)
            mixed = mixed * (reduction_rate)
        mixed = mixed.astype(np.int16)
        return mixed

    def __getitem__(self, index):
        video_feats, audio_feats = self.load_feature(self.names[index])
        audio_feats, video_feats = torch.from_numpy(audio_feats.astype(np.float32)) if audio_feats is not None else None, torch.from_numpy(video_feats.astype(np.float32)) if video_feats is not None else None
        if self.normalize and 'audio' in self.modalities:
            with torch.no_grad():
                audio_feats = F.layer_norm(audio_feats, audio_feats.shape[1:])
        labels = self.get_labels(index)
        fid = self.names[index][1].split(':')[1]
        return {"id": index, 'fid': fid, "video_source": video_feats, 'audio_source': audio_feats, "label_list": labels}

    def __len__(self):
        return len(self.sizes)

    def crop_to_max_size(self, wav, target_size, start=None):
        size = len(wav)
        diff = size - target_size
        if diff <= 0:
            return wav, 0
        # longer utterances
        if start is None:
            start, end = 0, target_size
            if self.random_crop:
                start = np.random.randint(0, diff + 1)
                end = size - diff + start
        else:
            end = start + target_size
        return wav[start:end], start

    def collater(self, samples):
        samples = [s for s in samples if s["id"] is not None]
        if len(samples) == 0:
            return {}

        audio_source, video_source = [s["audio_source"] for s in samples], [s["video_source"] for s in samples]
        if audio_source[0] is None:
            audio_source = None
        if video_source[0] is None:
            video_source = None
        if audio_source is not None:
            audio_sizes = [len(s) for s in audio_source]
        else:
            audio_sizes = [len(s) for s in video_source]
        if self.pad_audio:
            audio_size = min(max(audio_sizes), self.max_sample_size)
        else:
            audio_size = min(min(audio_sizes), self.max_sample_size)
        if audio_source is not None:
            collated_audios, padding_mask, audio_starts = self.collater_audio(audio_source, audio_size)
        else:
            collated_audios, audio_starts = None, None
        if video_source is not None:
            collated_videos, padding_mask, audio_starts = self.collater_audio(video_source, audio_size, audio_starts)
        else:
            collated_videos = None
        targets_by_label = [
            [s["label_list"][i] for s in samples]
            for i in range(self.num_labels)
        ]
        targets_list, lengths_list, ntokens_list = self.collater_label(
            targets_by_label, audio_size, audio_starts
        )
        source = {"audio": collated_audios, "video": collated_videos}
        net_input = {"source": source, "padding_mask": padding_mask}
        batch = {
            "id": torch.LongTensor([s["id"] for s in samples]),
            "net_input": net_input,
            "utt_id": [s['fid'] for s in samples]
        }

        if self.single_target:
            batch["target_lengths"] = lengths_list[0]
            batch["ntokens"] = ntokens_list[0]
            if self.is_s2s:
                batch['target'], net_input['prev_output_tokens'] = targets_list[0][0], targets_list[0][1]
            else:
                batch["target"] = targets_list[0]
        else:
            batch["target_lengths_list"] = lengths_list
            batch["ntokens_list"] = ntokens_list
            batch["target_list"] = targets_list
        return batch

    def collater_audio(self, audios, audio_size, audio_starts=None):
        audio_feat_shape = list(audios[0].shape[1:])
        collated_audios = audios[0].new_zeros([len(audios), audio_size]+audio_feat_shape)
        padding_mask = (
            torch.BoolTensor(len(audios), audio_size).fill_(False) # 
        )
        start_known = audio_starts is not None
        audio_starts = [0 for _ in audios] if not start_known else audio_starts
        for i, audio in enumerate(audios):
            diff = len(audio) - audio_size
            if diff == 0:
                collated_audios[i] = audio
            elif diff < 0:
                assert self.pad_audio
                collated_audios[i] = torch.cat(
                    [audio, audio.new_full([-diff]+audio_feat_shape, 0.0)]
                )
                padding_mask[i, diff:] = True
            else:
                collated_audios[i], audio_starts[i] = self.crop_to_max_size(
                    audio, audio_size, audio_starts[i] if start_known else None
                )
        if len(audios[0].shape) == 2:
            collated_audios = collated_audios.transpose(1, 2) # [B, T, F] -> [B, F, T]
        else:
            collated_audios = collated_audios.permute((0, 4, 1, 2, 3)).contiguous() # [B, T, H, W, C] -> [B, C, T, H, W]
        return collated_audios, padding_mask, audio_starts

    def collater_frm_label(

        self, targets, audio_size, audio_starts, label_rate, pad

    ):
        assert label_rate > 0
        s2f = label_rate / self.sample_rate # num label per sample
        frm_starts = [int(round(s * s2f)) for s in audio_starts]
        frm_size = int(round(audio_size * s2f))
        if not self.pad_audio:
            rem_size = [len(t) - s for t, s in zip(targets, frm_starts)]
            frm_size = min(frm_size, *rem_size)
        targets = [t[s: s + frm_size] for t, s in zip(targets, frm_starts)]
        logger.debug(f"audio_starts={audio_starts}")
        logger.debug(f"frame_starts={frm_starts}")
        logger.debug(f"frame_size={frm_size}")

        lengths = torch.LongTensor([len(t) for t in targets])
        ntokens = lengths.sum().item()
        targets = data_utils.collate_tokens(
            targets, pad_idx=pad, left_pad=False
        )
        return targets, lengths, ntokens

    def collater_seq_label(self, targets, pad):
        lengths = torch.LongTensor([len(t) for t in targets])
        ntokens = lengths.sum().item()
        targets = data_utils.collate_tokens(
            targets, pad_idx=pad, left_pad=False
        )
        return targets, lengths, ntokens

    def collater_seq_label_s2s(self, targets, pad):
        lengths = torch.LongTensor([len(t) for t in targets])
        ntokens = lengths.sum().item()
        pad, eos = self.label_processors[0].dictionary.pad(), self.label_processors[0].dictionary.eos()
        targets_ = data_utils.collate_tokens(targets, pad_idx=pad, eos_idx=eos, left_pad=False)
        prev_output_tokens = data_utils.collate_tokens(targets, pad_idx=pad, eos_idx=eos, left_pad=False, move_eos_to_beginning=True)
        return (targets_, prev_output_tokens), lengths, ntokens

    def collater_label(self, targets_by_label, audio_size, audio_starts):
        targets_list, lengths_list, ntokens_list = [], [], []
        itr = zip(targets_by_label, self.label_rates, self.pad_list)
        for targets, label_rate, pad in itr:
            if label_rate == -1:
                if self.is_s2s:
                    targets, lengths, ntokens = self.collater_seq_label_s2s(targets, pad)
                else:
                    targets, lengths, ntokens = self.collater_seq_label(targets, pad)
            else:
                targets, lengths, ntokens = self.collater_frm_label(
                    targets, audio_size, audio_starts, label_rate, pad
                )
            targets_list.append(targets)
            lengths_list.append(lengths)
            ntokens_list.append(ntokens)
        return targets_list, lengths_list, ntokens_list

    def num_tokens(self, index):
        return self.size(index)

    def size(self, index):
        if self.pad_audio:
            return self.sizes[index]
        return min(self.sizes[index], self.max_sample_size)

    def ordered_indices(self):
        if self.shuffle:
            order = [np.random.permutation(len(self))]
        else:
            order = [np.arange(len(self))]

        order.append(self.sizes)
        return np.lexsort(order)[::-1]