File size: 6,315 Bytes
35c1cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import logging
import math
import torch.nn as nn
import pdb


logger = logging.getLogger(__name__)

def conv3x3(in_planes, out_planes, stride=1):
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


def downsample_basic_block( inplanes, outplanes, stride ):
    return  nn.Sequential(
                nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(outplanes),
            )

def downsample_basic_block_v2( inplanes, outplanes, stride ):
    return  nn.Sequential(
                nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False),
                nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=1, bias=False),
                nn.BatchNorm2d(outplanes),
            )



class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, relu_type = 'relu' ):
        super(BasicBlock, self).__init__()

        assert relu_type in ['relu','prelu']

        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)

        if relu_type == 'relu':
            self.relu1 = nn.ReLU(inplace=True)
            self.relu2 = nn.ReLU(inplace=True)
        elif relu_type == 'prelu':
            self.relu1 = nn.PReLU(num_parameters=planes)
            self.relu2 = nn.PReLU(num_parameters=planes)
        else:
            raise Exception('relu type not implemented')

        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu1(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu2(out)

        return out


class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000, relu_type = 'relu', gamma_zero = False, avg_pool_downsample = False):
        self.inplanes = 64
        self.relu_type = relu_type
        self.gamma_zero = gamma_zero
        self.downsample_block = downsample_basic_block_v2 if avg_pool_downsample else downsample_basic_block

        super(ResNet, self).__init__()
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d(1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

        if self.gamma_zero:
            for m in self.modules():
                if isinstance(m, BasicBlock ):
                    m.bn2.weight.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):


        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = self.downsample_block( inplanes = self.inplanes, 
                                                 outplanes = planes * block.expansion, 
                                                 stride = stride )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, relu_type = self.relu_type))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, relu_type = self.relu_type))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        return x

class ResEncoder(nn.Module):
    def __init__(self, relu_type, weights):
        super(ResEncoder, self).__init__()
        self.frontend_nout = 64
        self.backend_out = 512
        frontend_relu = nn.PReLU(num_parameters=self.frontend_nout) if relu_type == 'prelu' else nn.ReLU()
        self.frontend3D = nn.Sequential(
            nn.Conv3d(1, self.frontend_nout, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=(2, 3, 3), bias=False),
            nn.BatchNorm3d(self.frontend_nout),
            frontend_relu,
            nn.MaxPool3d( kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)))
        self.trunk = ResNet(BasicBlock, [2, 2, 2, 2], relu_type=relu_type)
        if weights is not None:
            logger.info(f"Load {weights} for resnet")
            std = torch.load(weights, map_location=torch.device('cpu'))['model_state_dict']
            frontend_std, trunk_std = OrderedDict(), OrderedDict()
            for key, val in std.items():
                new_key = '.'.join(key.split('.')[1:])
                if 'frontend3D' in key:
                    frontend_std[new_key] = val
                if 'trunk' in key:
                    trunk_std[new_key] = val
            self.frontend3D.load_state_dict(frontend_std)
            self.trunk.load_state_dict(trunk_std)

    def forward(self, x):
        B, C, T, H, W = x.size()
        x = self.frontend3D(x)
        Tnew = x.shape[2]
        x = self.threeD_to_2D_tensor(x)
        x = self.trunk(x)
        x = x.view(B, Tnew, x.size(1))
        x = x.transpose(1, 2).contiguous()
        return x

    def threeD_to_2D_tensor(self, x):
        n_batch, n_channels, s_time, sx, sy = x.shape
        x = x.transpose(1, 2).contiguous()
        return x.reshape(n_batch*s_time, n_channels, sx, sy)