Spaces:
Runtime error
Runtime error
File size: 10,366 Bytes
35c1cfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import cv2
import torch
import random
import numpy as np
from typing import Dict, List, Optional, Tuple
def load_video(path):
for i in range(3):
try:
cap = cv2.VideoCapture(path)
frames = []
while True:
ret, frame = cap.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frames.append(frame)
else:
break
frames = np.stack(frames)
return frames
except Exception:
print(f"failed loading {path} ({i} / 3)")
if i == 2:
raise ValueError(f"Unable to load {path}")
class Compose(object):
"""Compose several preprocess together.
Args:
preprocess (list of ``Preprocess`` objects): list of preprocess to compose.
"""
def __init__(self, preprocess):
self.preprocess = preprocess
def __call__(self, sample):
for t in self.preprocess:
sample = t(sample)
return sample
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.preprocess:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
class Normalize(object):
"""Normalize a ndarray image with mean and standard deviation.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, frames):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized Tensor image.
"""
frames = (frames - self.mean) / self.std
return frames
def __repr__(self):
return self.__class__.__name__+'(mean={0}, std={1})'.format(self.mean, self.std)
class CenterCrop(object):
"""Crop the given image at the center
"""
def __init__(self, size):
self.size = size
def __call__(self, frames):
"""
Args:
img (numpy.ndarray): Images to be cropped.
Returns:
numpy.ndarray: Cropped image.
"""
t, h, w = frames.shape
th, tw = self.size
delta_w = int(round((w - tw))/2.)
delta_h = int(round((h - th))/2.)
frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw]
return frames
class RandomCrop(object):
"""Crop the given image at the center
"""
def __init__(self, size):
self.size = size
def __call__(self, frames):
"""
Args:
img (numpy.ndarray): Images to be cropped.
Returns:
numpy.ndarray: Cropped image.
"""
t, h, w = frames.shape
th, tw = self.size
delta_w = random.randint(0, w-tw)
delta_h = random.randint(0, h-th)
frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw]
return frames
def __repr__(self):
return self.__class__.__name__ + '(size={0})'.format(self.size)
class HorizontalFlip(object):
"""Flip image horizontally.
"""
def __init__(self, flip_ratio):
self.flip_ratio = flip_ratio
def __call__(self, frames):
"""
Args:
img (numpy.ndarray): Images to be flipped with a probability flip_ratio
Returns:
numpy.ndarray: Cropped image.
"""
t, h, w = frames.shape
if random.random() < self.flip_ratio:
for index in range(t):
frames[index] = cv2.flip(frames[index], 1)
return frames
def compute_mask_indices(
shape: Tuple[int, int],
padding_mask: Optional[torch.Tensor],
mask_prob: float,
mask_length: int,
mask_type: str = "static",
mask_other: float = 0.0,
min_masks: int = 0,
no_overlap: bool = False,
min_space: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape
Args:
shape: the the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_type: how to compute mask lengths
static = fixed size
uniform = sample from uniform distribution [mask_other, mask_length*2]
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
poisson = sample from possion distribution with lambda = mask length
min_masks: minimum number of masked spans
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
"""
bsz, all_sz = shape
mask = np.full((bsz, all_sz), False)
all_num_mask = int(
# add a random number for probabilistic rounding
mask_prob * all_sz / float(mask_length)
+ np.random.rand()
)
all_num_mask = max(min_masks, all_num_mask)
mask_idcs = []
for i in range(bsz):
if padding_mask is not None:
sz = all_sz - padding_mask[i].long().sum().item()
num_mask = int(
# add a random number for probabilistic rounding
mask_prob * sz / float(mask_length)
+ np.random.rand()
)
num_mask = max(min_masks, num_mask)
else:
sz = all_sz
num_mask = all_num_mask
if mask_type == "static":
lengths = np.full(num_mask, mask_length)
elif mask_type == "uniform":
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
elif mask_type == "normal":
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
lengths = [max(1, int(round(x))) for x in lengths]
elif mask_type == "poisson":
lengths = np.random.poisson(mask_length, size=num_mask)
lengths = [int(round(x)) for x in lengths]
else:
raise Exception("unknown mask selection " + mask_type)
if sum(lengths) == 0:
lengths[0] = min(mask_length, sz - 1)
if no_overlap:
mask_idc = []
def arrange(s, e, length, keep_length):
span_start = np.random.randint(s, e - length)
mask_idc.extend(span_start + i for i in range(length))
new_parts = []
if span_start - s - min_space >= keep_length:
new_parts.append((s, span_start - min_space + 1))
if e - span_start - keep_length - min_space > keep_length:
new_parts.append((span_start + length + min_space, e))
return new_parts
parts = [(0, sz)]
min_length = min(lengths)
for length in sorted(lengths, reverse=True):
lens = np.fromiter(
(e - s if e - s >= length + min_space else 0 for s, e in parts),
np.int,
)
l_sum = np.sum(lens)
if l_sum == 0:
break
probs = lens / np.sum(lens)
c = np.random.choice(len(parts), p=probs)
s, e = parts.pop(c)
parts.extend(arrange(s, e, length, min_length))
mask_idc = np.asarray(mask_idc)
else:
min_len = min(lengths)
if sz - min_len <= num_mask:
min_len = sz - num_mask - 1
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
mask_idc = np.asarray(
[
mask_idc[j] + offset
for j in range(len(mask_idc))
for offset in range(lengths[j])
]
)
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
min_len = min([len(m) for m in mask_idcs])
batch_indexes, starts, ends = [], [], []
for i, mask_idc in enumerate(mask_idcs):
if len(mask_idc) > min_len:
mask_idc = np.random.choice(mask_idc, min_len, replace=False)
mask[i, mask_idc] = True
vals, run_starts, run_lengths = find_runs(mask[i])
start_indices, lengths = run_starts[vals == True], run_lengths[vals == True]
starts.append(start_indices)
ends.append(start_indices+lengths)
batch_indexes.append(np.zeros([len(start_indices)])+i)
return mask, np.concatenate(starts).astype(np.int64), np.concatenate(ends).astype(np.int64), np.concatenate(batch_indexes).astype(np.int64)
def find_runs(x):
"""Find runs of consecutive items in an array."""
# ensure array
x = np.asanyarray(x)
if x.ndim != 1:
raise ValueError('only 1D array supported')
n = x.shape[0]
# handle empty array
if n == 0:
return np.array([]), np.array([]), np.array([])
else:
# find run starts
loc_run_start = np.empty(n, dtype=bool)
loc_run_start[0] = True
np.not_equal(x[:-1], x[1:], out=loc_run_start[1:])
run_starts = np.nonzero(loc_run_start)[0]
# find run values
run_values = x[loc_run_start]
# find run lengths
run_lengths = np.diff(np.append(run_starts, n))
return run_values, run_starts, run_lengths
|