Spaces:
Runtime error
Runtime error
File size: 21,157 Bytes
35c1cfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import os
import types
import torch
import soundfile as sf
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from typing import List, Optional, Tuple, Union
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, AutoModel, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from slam_llm.utils.config_utils import generate_peft_config
from slam_llm.utils.train_utils import print_module_size, print_model_size
from peft import PeftModel, PeftConfig
from torch.nn import CrossEntropyLoss
from slam_llm.utils.metric import compute_accuracy
import logging
logger = logging.getLogger(__name__)
def model_factory(train_config, model_config, **kwargs):
# return necessary components for training
tokenizer = setup_tokenizer(train_config, model_config, **kwargs)
encoder = setup_encoder(train_config, model_config, **kwargs)
# llm
llm = setup_llm(train_config, model_config, **kwargs)
# projector
encoder_projector = setup_encoder_projector(
train_config, model_config, **kwargs
)
model = slam_model(
encoder,
llm,
encoder_projector,
tokenizer,
train_config,
model_config,
**kwargs,
)
ckpt_path = kwargs.get("ckpt_path", None) #FIX(MZY): load model ckpt(mainly projector, related to model_checkpointing/checkpoint_handler.py: save_model_checkpoint_peft)
if ckpt_path is not None:
logger.info("loading other parts from: {}".format(ckpt_path))
ckpt_dict = torch.load(ckpt_path, map_location="cpu")
model.load_state_dict(ckpt_dict, strict=False)
print_model_size(model, train_config, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)
return model, tokenizer
def setup_tokenizer(train_config, model_config, **kwargs):
# Load the tokenizer and add special tokens
if "vallex" in model_config.llm_name.lower():
return None
elif "mupt" in model_config.llm_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_config.llm_path,
trust_remote_code=True,
use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(model_config.llm_path)
tokenizer.pad_token_id = tokenizer.eos_token_id
return tokenizer
def setup_encoder(train_config, model_config, **kwargs):
encoder_list = model_config.encoder_name.split(",") if model_config.encoder_name else []
if len(encoder_list) == 0:
return None
if len(encoder_list) == 1:
encoder_name = encoder_list[0]
if encoder_name == "whisper" or encoder_name == "qwen-audio":
from slam_llm.models.encoder import WhisperWrappedEncoder
encoder = WhisperWrappedEncoder.load(model_config)
if encoder_name == "beats":
from slam_llm.models.encoder import BEATsEncoder
encoder = BEATsEncoder.load(model_config)
if encoder_name == "eat":
from slam_llm.models.encoder import EATEncoder
encoder = EATEncoder.load(model_config)
if encoder_name == "SpatialAST":
from slam_llm.models.encoder import SpatialASTEncoder
encoder = SpatialASTEncoder.load(model_config)
if encoder_name == "wavlm":
from slam_llm.models.encoder import WavLMEncoder
encoder = WavLMEncoder.load(model_config)
if encoder_name == "av_hubert":
from slam_llm.models.encoder import AVHubertEncoder
encoder = AVHubertEncoder.load(model_config)
if encoder_name == "hubert":
from slam_llm.models.encoder import HubertEncoder
encoder = HubertEncoder.load(model_config)
if encoder_name == "musicfm":
from slam_llm.models.encoder import MusicFMEncoder
encoder = MusicFMEncoder.load(model_config)
if "llama" in encoder_name.lower():
from slam_llm.models.encoder import HfTextEncoder
encoder = HfTextEncoder.load(model_config)
print_module_size(encoder, encoder_name, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)
if train_config.freeze_encoder:
for name, param in encoder.named_parameters():
param.requires_grad = False
encoder.eval()
print_module_size(encoder, encoder_name, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)
return encoder
def setup_llm(train_config, model_config, **kwargs):
from pkg_resources import packaging
use_cache = False if train_config.enable_fsdp or train_config.enable_ddp else None
if (train_config.enable_fsdp or train_config.enable_ddp) and train_config.low_cpu_fsdp:
"""
for FSDP, we can save cpu memory by loading pretrained model on rank0 only.
this avoids cpu oom when loading large models like llama 70B, in which case
model alone would consume 2+TB cpu mem (70 * 4 * 8). This will add some comms
overhead and currently requires latest nightly.
"""
# v = packaging.version.parse(torch.__version__)
# verify_latest_nightly = v.is_devrelease and v.dev >= 20230701
# if not verify_latest_nightly:
# raise Exception("latest pytorch nightly build is required to run with low_cpu_fsdp config, "
# "please install latest nightly.")
rank = int(os.environ["RANK"])
if rank == 0:
if "vallex" in model_config.llm_name.lower():
from src.slam_llm.models.vallex.vallex_config import VallexConfig
from src.slam_llm.models.vallex.vallex_model import VALLE
vallex_config = VallexConfig(
**model_config
)
model = VALLE(vallex_config)
elif "aya" in model_config.llm_name.lower():
model = AutoModelForSeq2SeqLM.from_pretrained(
model_config.llm_path,
load_in_8bit=True if train_config.quantization else None,
device_map="auto" if train_config.quantization else None,
use_cache=use_cache,
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_config.llm_path,
load_in_8bit=True if train_config.quantization else None,
device_map="auto" if train_config.quantization else None,
use_cache=use_cache,
)
else:
llama_config = AutoConfig.from_pretrained(model_config.llm_path)
llama_config.use_cache = use_cache
# with torch.device("meta"):
if "aya" in model_config.llm_name.lower():
model = AutoModelForSeq2SeqLM(llama_config)
else:
model = AutoModelForCausalLM(llama_config) #(FIX:MZY): torch 2.0.1 does not support `meta`
else:
if "vallex" in model_config.llm_name.lower():
from src.slam_llm.models.vallex.vallex_config import VallexConfig
from src.slam_llm.models.vallex.vallex_model import VALLE
vallex_config = VallexConfig(
**model_config
)
model = VALLE(vallex_config)
elif "aya" in model_config.llm_name.lower():
model = AutoModelForSeq2SeqLM.from_pretrained(
model_config.llm_path,
load_in_8bit=True if train_config.quantization else None,
device_map="auto" if train_config.quantization else None,
use_cache=use_cache,
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_config.llm_path,
load_in_8bit=True if train_config.quantization else None,
device_map="auto" if train_config.quantization else None,
use_cache=use_cache,
)
if (train_config.enable_fsdp or train_config.enable_ddp) and train_config.use_fast_kernels:
"""
For FSDP and FSDP+PEFT, setting 'use_fast_kernels' will enable
using of Flash Attention or Xformer memory-efficient kernels
based on the hardware being used. This would speed up fine-tuning.
"""
try:
from optimum.bettertransformer import BetterTransformer
model = BetterTransformer.transform(model)
except ImportError:
logger.warning("Module 'optimum' not found. Please install 'optimum' it before proceeding.")
print_module_size(model, model_config.llm_name, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)
# Prepare the model for int8 training if quantization is enabled
if train_config.quantization:
model = prepare_model_for_kbit_training(model)
if train_config.freeze_llm: # TODO:to test offical `freeze_layers` and `num_freeze_layers`
for name, param in model.named_parameters():
param.requires_grad = False
model.eval()
if kwargs.get("peft_ckpt", None): # (FIX:MZY):reload will get wrong results when decoding
logger.info("loading peft_ckpt from: {}".format(kwargs.get("peft_ckpt")))
model = PeftModel.from_pretrained(model=model, model_id=kwargs.get("peft_ckpt"), is_trainable=True)
model.print_trainable_parameters()
elif train_config.use_peft:
logger.info("setup peft...")
peft_config = generate_peft_config(train_config)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
print_module_size(model, model_config.llm_name, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)
return model
def setup_encoder_projector(train_config, model_config, **kwargs):
if model_config.encoder_projector == "linear":
from slam_llm.models.projector import EncoderProjectorConcat
encoder_projector = EncoderProjectorConcat(model_config)
elif model_config.encoder_projector == "cov1d-linear":
from slam_llm.models.projector import EncoderProjectorCov1d
encoder_projector = EncoderProjectorCov1d(model_config)
elif model_config.encoder_projector == "q-former":
from slam_llm.models.projector import EncoderProjectorQFormer
encoder_projector = EncoderProjectorQFormer(model_config)
else:
return None
print_module_size(encoder_projector, model_config.encoder_projector, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)
return encoder_projector
class slam_model(nn.Module):
def __init__(
self,
encoder: nn.Module,
llm: nn.Module,
encoder_projector: nn.Module,
tokenizer,
train_config,
model_config,
**kwargs
):
super().__init__()
# modality encoder
self.encoder = encoder
# llm
self.llm = llm
# projector
self.encoder_projector = encoder_projector
# tokenizer
self.tokenizer = tokenizer
self.metric = kwargs.get("metric", "acc")
self.train_config = train_config
self.model_config = model_config
if train_config.get("enable_deepspeed", False):
def new_forward(self, input):
output = F.layer_norm(
input.float(),
self.normalized_shape,
self.weight.float() if self.weight is not None else None,
self.bias.float() if self.bias is not None else None,
self.eps,
)
return output.type_as(input)
for item in self.modules():
if isinstance(item, nn.LayerNorm):
item.forward = types.MethodType(new_forward, item)
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
audio_mel = kwargs.get("audio_mel", None)
audio_mel_mask = kwargs.get("audio_mel_mask", None)
audio_mel_post_mask = kwargs.get("audio_mel_post_mask", None) # 2x downsample for whisper
audio = kwargs.get("audio", None)
audio_mask = kwargs.get("audio_mask", None)
visual = kwargs.get("visual", None)
visual_mask = kwargs.get("visual_mask", None)
# for text encoder
instruct_ids = kwargs.get("instruct_ids", None)
instruct_mask = kwargs.get("instruct_mask", None)
modality_mask = kwargs.get("modality_mask", None)
zh_data = kwargs.get("zh", None)
en_data = kwargs.get("en", None)
encoder_outs = None
if audio_mel is not None or audio is not None or visual is not None:
if self.train_config.freeze_encoder: # freeze encoder
self.encoder.eval()
if self.model_config.encoder_name == "whisper":
encoder_outs = self.encoder.extract_variable_length_features(audio_mel.permute(0, 2, 1)) # bs*seq*dim
if self.model_config.encoder_name == "beats":
encoder_outs, audio_mel_post_mask = self.encoder.extract_features(audio_mel, audio_mel_mask) # bs*seq*dim
if self.model_config.encoder_name == "eat":
encoder_outs = self.encoder.model.extract_features(audio_mel.unsqueeze(dim=1), padding_mask = None, mask=False, remove_extra_tokens = False)['x']
if self.model_config.encoder_name == "SpatialAST":
encoder_outs = self.encoder(audio) # output: [bs, seq_len=3+512, dim=768]
if self.model_config.encoder_name == "wavlm":
encoder_outs = self.encoder.extract_features(audio, 1 - audio_mask) #(FIX:MZY): 1-audio_mask is needed for wavlm as the padding mask
if self.model_config.encoder_name == "hubert":
results = self.encoder(source = audio, padding_mask = 1-audio_mask)
if self.model_config.encoder_type == "pretrain":
encoder_outs, audio_mel_post_mask = results["x"], results["padding_mask"]
if self.model_config.encoder_type == "finetune":
encoder_outs, audio_mel_post_mask = results["encoder_out"], results["padding_mask"]
encoder_outs = encoder_outs.transpose(0, 1)
if self.model_config.encoder_name == "av_hubert":
results = self.encoder(source={'video':visual, 'audio':audio}, padding_mask=visual_mask) # bs*seq*dim
encoder_outs, audio_mel_post_mask = results["encoder_out"], results["padding_mask"]
encoder_outs = encoder_outs.transpose(0, 1)
audio_mel_post_mask = (~audio_mel_post_mask).float()
if self.model_config.encoder_name == 'musicfm':
encoder_outs = self.encoder.extract_features(audio, padding_mask = None) # MusicFM doesn't support padding mask
if self.encoder is None:
encoder_outs = audio_mel if audio_mel is not None else audio
if self.model_config.encoder_projector == "q-former":
encoder_outs = self.encoder_projector(encoder_outs, audio_mel_post_mask)
if self.model_config.encoder_projector == "linear":
encoder_outs = self.encoder_projector(encoder_outs)
if self.model_config.encoder_projector == "cov1d-linear":
encoder_outs = self.encoder_projector(encoder_outs)
if instruct_ids is not None:
if self.encoder is not None:
encoder_outs = self.encoder(input_ids=instruct_ids, attention_mask=instruct_mask).last_hidden_state
if self.model_config.encoder_projector == "q-former":
encoder_outs = self.encoder_projector(encoder_outs, instruct_mask)
if self.model_config.encoder_projector == "linear":
encoder_outs = self.encoder_projector(encoder_outs)
if input_ids is not None:
input_ids[input_ids == -1] = 0
if isinstance(self.llm, T5ForConditionalGeneration):
inputs_embeds = self.llm.shared(input_ids)
else:
if hasattr(self.llm.model, "embed_tokens"):
inputs_embeds = self.llm.model.embed_tokens(input_ids)
elif hasattr(self.llm.model.model, "embed_tokens"):
inputs_embeds = self.llm.model.model.embed_tokens(input_ids)
else:
inputs_embeds = self.llm.model.model.model.embed_tokens(input_ids)
if modality_mask is not None:
modality_mask_start_indices = (modality_mask == True).float().argmax(dim=1)
modality_lengths = torch.clamp(modality_mask.sum(dim=1), max=encoder_outs.shape[1]).tolist()
encoder_outs_pad = torch.zeros_like(inputs_embeds)
for i in range(encoder_outs.shape[0]):
encoder_outs_pad[
i, modality_mask_start_indices[i]:modality_mask_start_indices[i]+modality_lengths[i]
] = encoder_outs[i][:modality_lengths[i]]
inputs_embeds = encoder_outs_pad + inputs_embeds * (~modality_mask[:, :, None])
if kwargs.get("inference_mode", False):
return inputs_embeds, attention_mask
if zh_data is not None and en_data is not None:
model_outputs, acc = self.llm(zh=zh_data, en=en_data)
else:
model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels)
acc = -1
if self.metric:
with torch.no_grad():
preds = torch.argmax(model_outputs.logits, -1)
acc = compute_accuracy(preds.detach()[:, :-1], labels.detach()[:, 1:], ignore_label=-100)
return model_outputs, acc
@torch.no_grad()
def generate(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
kwargs["inference_mode"] = True
inputs_embeds, attention_mask = self.forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
model_outputs = self.llm.generate(
inputs_embeds=inputs_embeds,
# max_length=kwargs.get("max_length", 200),
max_new_tokens=kwargs.get("max_new_tokens", 200),
num_beams=kwargs.get("num_beams", 4),
do_sample=kwargs.get("do_sample", False),
min_length=kwargs.get("min_length", 1),
top_p=kwargs.get("top_p", 1.0),
repetition_penalty=kwargs.get("repetition_penalty", 1.0),
length_penalty=kwargs.get("length_penalty", 1.0),
temperature=kwargs.get("temperature", 1.0),
attention_mask=attention_mask,
bos_token_id=self.tokenizer.bos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id
)
return model_outputs
|