File size: 21,157 Bytes
35c1cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import os
import types
import torch
import soundfile as sf
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from typing import List, Optional, Tuple, Union
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, AutoModel, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training

from slam_llm.utils.config_utils import generate_peft_config
from slam_llm.utils.train_utils import print_module_size, print_model_size
from peft import PeftModel, PeftConfig
from torch.nn import CrossEntropyLoss
from slam_llm.utils.metric import compute_accuracy

import logging
logger = logging.getLogger(__name__)

def model_factory(train_config, model_config, **kwargs):
    # return necessary components for training
    tokenizer = setup_tokenizer(train_config, model_config, **kwargs)

    encoder = setup_encoder(train_config, model_config, **kwargs)

    # llm
    llm = setup_llm(train_config, model_config, **kwargs)

    # projector
    encoder_projector = setup_encoder_projector(
        train_config, model_config, **kwargs
    )
    model = slam_model(
        encoder,
        llm,
        encoder_projector,
        tokenizer,
        train_config,
        model_config,
        **kwargs,
    )

    ckpt_path = kwargs.get("ckpt_path", None) #FIX(MZY): load model ckpt(mainly projector, related to model_checkpointing/checkpoint_handler.py: save_model_checkpoint_peft)
    if ckpt_path is not None:
            logger.info("loading other parts from: {}".format(ckpt_path))
            ckpt_dict = torch.load(ckpt_path, map_location="cpu")
            model.load_state_dict(ckpt_dict, strict=False)

    print_model_size(model, train_config, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)
    return model, tokenizer


def setup_tokenizer(train_config, model_config, **kwargs):
    # Load the tokenizer and add special tokens
    if "vallex" in model_config.llm_name.lower():
        return None  
    elif "mupt" in model_config.llm_name.lower():
        tokenizer = AutoTokenizer.from_pretrained(model_config.llm_path,
                                            trust_remote_code=True,
                                            use_fast=False)
    else:
        tokenizer = AutoTokenizer.from_pretrained(model_config.llm_path)
        tokenizer.pad_token_id = tokenizer.eos_token_id
    return tokenizer


def setup_encoder(train_config, model_config, **kwargs):
    encoder_list = model_config.encoder_name.split(",") if model_config.encoder_name else []
    if len(encoder_list) == 0:
        return None
    if len(encoder_list) == 1:
        encoder_name = encoder_list[0]
        if encoder_name == "whisper" or encoder_name == "qwen-audio":
            from slam_llm.models.encoder import WhisperWrappedEncoder
            encoder = WhisperWrappedEncoder.load(model_config)
        if encoder_name == "beats": 
            from slam_llm.models.encoder import BEATsEncoder
            encoder = BEATsEncoder.load(model_config)
        if encoder_name == "eat":
            from slam_llm.models.encoder import EATEncoder
            encoder = EATEncoder.load(model_config)
        if encoder_name == "SpatialAST":
            from slam_llm.models.encoder import SpatialASTEncoder
            encoder = SpatialASTEncoder.load(model_config)
        if encoder_name == "wavlm":
            from slam_llm.models.encoder import WavLMEncoder
            encoder = WavLMEncoder.load(model_config)
        if encoder_name == "av_hubert":
            from slam_llm.models.encoder import AVHubertEncoder
            encoder = AVHubertEncoder.load(model_config)
        if encoder_name == "hubert":
            from slam_llm.models.encoder import HubertEncoder
            encoder = HubertEncoder.load(model_config)
        if encoder_name == "musicfm":
            from slam_llm.models.encoder import MusicFMEncoder
            encoder = MusicFMEncoder.load(model_config)

        if "llama" in encoder_name.lower():
            from slam_llm.models.encoder import HfTextEncoder
            encoder = HfTextEncoder.load(model_config)
    print_module_size(encoder, encoder_name, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)

    if train_config.freeze_encoder:
        for name, param in encoder.named_parameters(): 
            param.requires_grad = False
        encoder.eval()
    print_module_size(encoder, encoder_name, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)

    return encoder

def setup_llm(train_config, model_config, **kwargs):
    from pkg_resources import packaging
    use_cache = False if train_config.enable_fsdp or train_config.enable_ddp else None
    if (train_config.enable_fsdp or train_config.enable_ddp) and train_config.low_cpu_fsdp:
        """

        for FSDP, we can save cpu memory by loading pretrained model on rank0 only.

        this avoids cpu oom when loading large models like llama 70B, in which case

        model alone would consume 2+TB cpu mem (70 * 4 * 8). This will add some comms

        overhead and currently requires latest nightly.

        """
        # v = packaging.version.parse(torch.__version__)
        # verify_latest_nightly = v.is_devrelease and v.dev >= 20230701
        # if not verify_latest_nightly:
        #     raise Exception("latest pytorch nightly build is required to run with low_cpu_fsdp config, "
        #                     "please install latest nightly.")
        rank = int(os.environ["RANK"])
        if rank == 0:
            if "vallex" in model_config.llm_name.lower():
                from src.slam_llm.models.vallex.vallex_config import VallexConfig
                from src.slam_llm.models.vallex.vallex_model import VALLE
                vallex_config = VallexConfig(
                    **model_config
                )
                model = VALLE(vallex_config)
            elif "aya" in model_config.llm_name.lower():
                model = AutoModelForSeq2SeqLM.from_pretrained(
                    model_config.llm_path,
                    load_in_8bit=True if train_config.quantization else None,
                    device_map="auto" if train_config.quantization else None,
                    use_cache=use_cache,
                )
            else:
                model = AutoModelForCausalLM.from_pretrained(
                    model_config.llm_path,
                    load_in_8bit=True if train_config.quantization else None,
                    device_map="auto" if train_config.quantization else None,
                    use_cache=use_cache,
                )
        else:
            llama_config = AutoConfig.from_pretrained(model_config.llm_path)
            llama_config.use_cache = use_cache
            # with torch.device("meta"):
            if "aya" in model_config.llm_name.lower():
                model = AutoModelForSeq2SeqLM(llama_config)
            else:
                model = AutoModelForCausalLM(llama_config) #(FIX:MZY): torch 2.0.1 does not support `meta`

    else:
        if "vallex" in model_config.llm_name.lower():
            from src.slam_llm.models.vallex.vallex_config import VallexConfig
            from src.slam_llm.models.vallex.vallex_model import VALLE
            vallex_config = VallexConfig(
                **model_config
            )
            model = VALLE(vallex_config)
        elif "aya" in model_config.llm_name.lower():
            model = AutoModelForSeq2SeqLM.from_pretrained(
                model_config.llm_path,
                load_in_8bit=True if train_config.quantization else None,
                device_map="auto" if train_config.quantization else None,
                use_cache=use_cache,
            )
        else:
            model = AutoModelForCausalLM.from_pretrained(
                model_config.llm_path,
                load_in_8bit=True if train_config.quantization else None,
                device_map="auto" if train_config.quantization else None,
                use_cache=use_cache,
            )
    if (train_config.enable_fsdp or train_config.enable_ddp) and train_config.use_fast_kernels:
        """

        For FSDP and FSDP+PEFT, setting 'use_fast_kernels' will enable

        using of Flash Attention or Xformer memory-efficient kernels

        based on the hardware being used. This would speed up fine-tuning.

        """
        try:
            from optimum.bettertransformer import BetterTransformer
            model = BetterTransformer.transform(model)
        except ImportError:
            logger.warning("Module 'optimum' not found. Please install 'optimum' it before proceeding.")

    print_module_size(model, model_config.llm_name, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)

    # Prepare the model for int8 training if quantization is enabled
    if train_config.quantization:
        model = prepare_model_for_kbit_training(model)

    if train_config.freeze_llm: # TODO:to test offical `freeze_layers` and `num_freeze_layers`
        for name, param in model.named_parameters(): 
            param.requires_grad = False
        model.eval()
        
    if kwargs.get("peft_ckpt", None): # (FIX:MZY):reload will get wrong results when decoding
        logger.info("loading peft_ckpt from: {}".format(kwargs.get("peft_ckpt")))
        model = PeftModel.from_pretrained(model=model, model_id=kwargs.get("peft_ckpt"), is_trainable=True)
        model.print_trainable_parameters()
    elif train_config.use_peft:
        logger.info("setup peft...")
        peft_config = generate_peft_config(train_config)
        model = get_peft_model(model, peft_config)
        model.print_trainable_parameters()

    print_module_size(model, model_config.llm_name, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)
    return model

def setup_encoder_projector(train_config, model_config, **kwargs):
    if model_config.encoder_projector == "linear":
        from slam_llm.models.projector import EncoderProjectorConcat
        encoder_projector = EncoderProjectorConcat(model_config)
    elif model_config.encoder_projector == "cov1d-linear":
        from slam_llm.models.projector import EncoderProjectorCov1d
        encoder_projector = EncoderProjectorCov1d(model_config)
    elif model_config.encoder_projector == "q-former":
        from slam_llm.models.projector import EncoderProjectorQFormer
        encoder_projector = EncoderProjectorQFormer(model_config)
    else:
        return None
    print_module_size(encoder_projector, model_config.encoder_projector, int(os.environ["RANK"]) if train_config.enable_fsdp or train_config.enable_ddp else 0)
    return encoder_projector


class slam_model(nn.Module):
    def __init__(

        self,

        encoder: nn.Module,

        llm: nn.Module,

        encoder_projector: nn.Module,

        tokenizer, 

        train_config, 

        model_config, 

        **kwargs

    ):
        super().__init__()
        # modality encoder 
        self.encoder = encoder

        # llm
        self.llm = llm

        # projector
        self.encoder_projector = encoder_projector

        # tokenizer
        self.tokenizer = tokenizer
        self.metric = kwargs.get("metric", "acc")

        self.train_config = train_config
        self.model_config = model_config

        if train_config.get("enable_deepspeed", False):
            def new_forward(self, input):
                output = F.layer_norm(
                    input.float(),
                    self.normalized_shape,
                    self.weight.float() if self.weight is not None else None,
                    self.bias.float() if self.bias is not None else None,
                    self.eps,
                )
                return output.type_as(input)
            for item in self.modules():
                if isinstance(item, nn.LayerNorm):
                    item.forward = types.MethodType(new_forward, item)



    def forward(self,

                input_ids: torch.LongTensor = None,

                attention_mask: Optional[torch.Tensor] = None,

                position_ids: Optional[torch.LongTensor] = None,

                past_key_values: Optional[List[torch.FloatTensor]] = None,

                inputs_embeds: Optional[torch.FloatTensor] = None,

                labels: Optional[torch.LongTensor] = None,

                use_cache: Optional[bool] = None,

                output_attentions: Optional[bool] = None,

                output_hidden_states: Optional[bool] = None,

                return_dict: Optional[bool] = None,

                **kwargs,

                ):
        audio_mel = kwargs.get("audio_mel", None)
        audio_mel_mask = kwargs.get("audio_mel_mask", None)
        audio_mel_post_mask = kwargs.get("audio_mel_post_mask", None) # 2x downsample for whisper

        audio = kwargs.get("audio", None)
        audio_mask = kwargs.get("audio_mask", None)
        visual = kwargs.get("visual", None)
        visual_mask = kwargs.get("visual_mask", None)


        # for text encoder
        instruct_ids = kwargs.get("instruct_ids", None)
        instruct_mask = kwargs.get("instruct_mask", None)

        modality_mask = kwargs.get("modality_mask", None)
        
        zh_data = kwargs.get("zh", None)
        en_data = kwargs.get("en", None)

        encoder_outs = None
        if audio_mel is not None or audio is not None or visual is not None:
            if self.train_config.freeze_encoder: # freeze encoder
                self.encoder.eval()

            if self.model_config.encoder_name == "whisper":
                encoder_outs = self.encoder.extract_variable_length_features(audio_mel.permute(0, 2, 1)) # bs*seq*dim
            if self.model_config.encoder_name == "beats":
                encoder_outs, audio_mel_post_mask = self.encoder.extract_features(audio_mel, audio_mel_mask) # bs*seq*dim
            if self.model_config.encoder_name == "eat":
                encoder_outs = self.encoder.model.extract_features(audio_mel.unsqueeze(dim=1), padding_mask = None, mask=False, remove_extra_tokens = False)['x']
            if self.model_config.encoder_name == "SpatialAST":
                encoder_outs = self.encoder(audio) # output: [bs, seq_len=3+512, dim=768]
            if self.model_config.encoder_name == "wavlm":
                encoder_outs = self.encoder.extract_features(audio, 1 - audio_mask) #(FIX:MZY): 1-audio_mask is needed for wavlm as the padding mask
            if self.model_config.encoder_name == "hubert":
                results = self.encoder(source = audio, padding_mask = 1-audio_mask)
                if self.model_config.encoder_type == "pretrain":
                    encoder_outs, audio_mel_post_mask = results["x"], results["padding_mask"]
                if self.model_config.encoder_type == "finetune":
                    encoder_outs, audio_mel_post_mask = results["encoder_out"], results["padding_mask"]
                    encoder_outs = encoder_outs.transpose(0, 1)
            if self.model_config.encoder_name == "av_hubert":
                results = self.encoder(source={'video':visual, 'audio':audio}, padding_mask=visual_mask) # bs*seq*dim  
                encoder_outs, audio_mel_post_mask = results["encoder_out"], results["padding_mask"]
                encoder_outs = encoder_outs.transpose(0, 1)
                audio_mel_post_mask = (~audio_mel_post_mask).float()
            if self.model_config.encoder_name == 'musicfm':
                encoder_outs = self.encoder.extract_features(audio, padding_mask = None) # MusicFM doesn't support padding mask 
            if self.encoder is None:
                encoder_outs = audio_mel if audio_mel is not None else audio

            if self.model_config.encoder_projector == "q-former":
                encoder_outs = self.encoder_projector(encoder_outs, audio_mel_post_mask)
            if self.model_config.encoder_projector == "linear":
                encoder_outs = self.encoder_projector(encoder_outs)
            if self.model_config.encoder_projector == "cov1d-linear": 
                encoder_outs = self.encoder_projector(encoder_outs) 

        if instruct_ids is not None:
            if self.encoder is not None:
                encoder_outs = self.encoder(input_ids=instruct_ids, attention_mask=instruct_mask).last_hidden_state

            if self.model_config.encoder_projector == "q-former":
                encoder_outs = self.encoder_projector(encoder_outs, instruct_mask)
            if self.model_config.encoder_projector == "linear":
                encoder_outs = self.encoder_projector(encoder_outs)

        if input_ids is not None:
            input_ids[input_ids == -1] = 0
            if isinstance(self.llm, T5ForConditionalGeneration):
                inputs_embeds = self.llm.shared(input_ids)
            else:
                if hasattr(self.llm.model, "embed_tokens"):
                    inputs_embeds = self.llm.model.embed_tokens(input_ids)
                elif hasattr(self.llm.model.model, "embed_tokens"):
                    inputs_embeds = self.llm.model.model.embed_tokens(input_ids)
                else:
                    inputs_embeds = self.llm.model.model.model.embed_tokens(input_ids)

        if modality_mask is not None:
            modality_mask_start_indices = (modality_mask == True).float().argmax(dim=1)
            modality_lengths = torch.clamp(modality_mask.sum(dim=1), max=encoder_outs.shape[1]).tolist()

            encoder_outs_pad = torch.zeros_like(inputs_embeds)
            for i in range(encoder_outs.shape[0]):
                encoder_outs_pad[
                    i, modality_mask_start_indices[i]:modality_mask_start_indices[i]+modality_lengths[i]
                ] = encoder_outs[i][:modality_lengths[i]]
            
            inputs_embeds = encoder_outs_pad + inputs_embeds * (~modality_mask[:, :, None])

        if kwargs.get("inference_mode", False):
            return inputs_embeds, attention_mask

        if zh_data is not None and en_data is not None:
            model_outputs, acc = self.llm(zh=zh_data, en=en_data)
        else:
            model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels)
            acc = -1
            if self.metric:
                with torch.no_grad():
                    preds = torch.argmax(model_outputs.logits, -1)
                    acc = compute_accuracy(preds.detach()[:, :-1], labels.detach()[:, 1:], ignore_label=-100)

        return model_outputs, acc
    
    @torch.no_grad()
    def generate(self,

                input_ids: torch.LongTensor = None,

                attention_mask: Optional[torch.Tensor] = None,

                position_ids: Optional[torch.LongTensor] = None,

                past_key_values: Optional[List[torch.FloatTensor]] = None,

                inputs_embeds: Optional[torch.FloatTensor] = None,

                labels: Optional[torch.LongTensor] = None,

                use_cache: Optional[bool] = None,

                output_attentions: Optional[bool] = None,

                output_hidden_states: Optional[bool] = None,

                return_dict: Optional[bool] = None,

                **kwargs,

                ):
        kwargs["inference_mode"] = True

        inputs_embeds, attention_mask = self.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs,
        )

        model_outputs = self.llm.generate(
            inputs_embeds=inputs_embeds,
            # max_length=kwargs.get("max_length", 200),
            max_new_tokens=kwargs.get("max_new_tokens", 200),
            num_beams=kwargs.get("num_beams", 4),
            do_sample=kwargs.get("do_sample", False),
            min_length=kwargs.get("min_length", 1),
            top_p=kwargs.get("top_p", 1.0),
            repetition_penalty=kwargs.get("repetition_penalty", 1.0),
            length_penalty=kwargs.get("length_penalty", 1.0),
            temperature=kwargs.get("temperature", 1.0),
            attention_mask=attention_mask,
            bos_token_id=self.tokenizer.bos_token_id,
            eos_token_id=self.tokenizer.eos_token_id,
            pad_token_id=self.tokenizer.pad_token_id
        )

        return model_outputs