File size: 6,759 Bytes
35c1cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from typing import Optional, Tuple, List
import math

import torch
from torch import Tensor
from torch.nn import Linear, Module
from torch.nn import functional as F
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear


class MultiheadAttention(Module):
    __constants__ = ["batch_first"]
    bias_k: Optional[torch.Tensor]
    bias_v: Optional[torch.Tensor]

    def __init__(

            self,

            embed_dim,

            num_heads,

            dropout=0.0,

            bias=True,

            add_bias_kv=False,

            add_zero_attn=False,

            kdim=None,

            vdim=None,

            batch_first=False,

            linear1_cls=Linear,

            linear2_cls=Linear,

            device=None,

            dtype=None,

    ) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
        super(MultiheadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self._qkv_same_embed_dim = False

        self.num_heads = num_heads
        self.dropout = dropout
        self.batch_first = batch_first
        self.head_dim = embed_dim // num_heads
        self.num_heads = num_heads
        assert (
                self.head_dim * num_heads == self.embed_dim
        ), "embed_dim must be divisible by num_heads"

        self.k_proj = Linear(self.kdim, embed_dim)
        self.v_proj = Linear(self.kdim, embed_dim)
        self.q_proj = Linear(self.kdim, embed_dim)
        
        self.out_proj = NonDynamicallyQuantizableLinear(
            embed_dim, embed_dim, bias=bias, **factory_kwargs
        )

        self.add_zero_attn = add_zero_attn
        self.scaling = self.head_dim**-0.5

    def __setstate__(self, state):
        # Support loading old MultiheadAttention checkpoints generated by v1.1.0
        if "_qkv_same_embed_dim" not in state:
            state["_qkv_same_embed_dim"] = True

        super(MultiheadAttention, self).__setstate__(state)

    def forward(

            self,

            query: Tensor,

            key: Tensor,

            value: Tensor,

            key_padding_mask: Optional[Tensor] = None,

            need_weights: bool = True,

            attn_mask: Optional[Tensor] = None,

            average_attn_weights: bool = True,

    ) -> Tuple[Tensor, Optional[Tensor]]:

        # T,B,C
        B, T, C = query.size()
        
        q = self.q_proj(query)
        k = self.k_proj(key)
        v = self.v_proj(value)
        q *= self.scaling
        
        k = k.view(B, T, self.num_heads, C // self.num_heads).transpose(1, 2)  # (B, nh, T, hs)
        q = q.view(B, T, self.num_heads, C // self.num_heads).transpose(1, 2)  # (B, nh, T, hs)
        v = v.view(B, T, self.num_heads, C // self.num_heads).transpose(1, 2)  # (B, nh, T, hs)
        
        attn_weights = q @ k.transpose(-2, -1) # B, nh, T, T
        
        if attn_mask is not None:
            # attn_mask is inf
            # attn_mask = attn_mask.unsqueeze(0)
            # attn_weights += attn_mask
            if torch.is_floating_point(attn_mask):
                # print(attn_weights.size(), attn_mask.size())
                attn_weights += attn_mask.unsqueeze(0).unsqueeze(1)
            else:
                attn_weights = attn_weights.masked_fill(attn_mask, float('-inf'))

        if key_padding_mask is not None:
            # don't attend to padding symbols
            attn_weights = attn_weights.view(B, self.num_heads, T, T)
            attn_weights = attn_weights.masked_fill(
                key_padding_mask.unsqueeze(1)
                .unsqueeze(2)
                .to(torch.bool),
                float("-inf"),
            )
        attn_weights_float = F.softmax(attn_weights, dim=-1)
        attn = attn_weights_float @ v
        
        y = attn.transpose(1, 2).contiguous().view(B, T, C)  # re-assemble all head outputs side by side
        y = self.out_proj(y)
        return y, attn_weights
    
    def infer(self, 

              x: Tensor,

              key_padding_mask: Optional[Tensor] = None,

              need_weights: bool = True,

              attn_mask: Optional[Tensor] = None,

              average_attn_weights: bool = True,

              past_kv = None,

              use_cache = False):
        
        # print("debug:"+str(x.size()))
        
        B, T, C = x.size()
        
        q = self.q_proj(x)
        k = self.k_proj(x)
        v = self.v_proj(x)
        q *= self.scaling
        
        # k = k.view(T, B*self.num_heads, self.head_dim).transpose(0, 1)  # (B, nh, T, hs)
        # q = q.view(T, B*self.num_heads, self.head_dim).transpose(0, 1)  # (B, nh, T, hs)
        # v = v.view(T, B*self.num_heads, self.head_dim).transpose(0, 1)  # (B, nh, T, hs)
        
        k = k.view(B, T, self.num_heads, C // self.num_heads).transpose(1, 2)  # (B, nh, T, hs)
        q = q.view(B, T, self.num_heads, C // self.num_heads).transpose(1, 2)  # (B, nh, T, hs)
        v = v.view(B, T, self.num_heads, C // self.num_heads).transpose(1, 2)  # (B, nh, T, hs)
        
        if past_kv is not None:
            past_key = past_kv[0]
            past_value = past_kv[1]
            k = torch.cat((past_key, k), dim=-2)
            v = torch.cat((past_value, v), dim=-2)
        
        FULL_T = k.shape[-2]
        
        if use_cache is True:
            present = (k, v)
        else:
            present = None
        
        # print(q.size(), k.size())
        attn_weights = q @ k.transpose(-2, -1)
        # print(attn_mask.size())
        attn_weights = attn_weights.masked_fill(attn_mask[FULL_T - T:FULL_T, :FULL_T], float('-inf'))
        
        # if key_padding_mask is not None:
        #     # don't attend to padding symbols
        #     attn_weights = attn_weights.view(B, self.num_heads, T, T)
        #     attn_weights = attn_weights.view(B, -1, self.num_heads, T, T)
        #     attn_weights = attn_weights.masked_fill(
        #         key_padding_mask.unsqueeze(1)
        #         .unsqueeze(2)
        #         .unsqueeze(3)
        #         .to(torch.bool),
        #         float("-inf"),
        #     )
        attn_weights_float = F.softmax(attn_weights, dim=-1, )
        # attn_weights = attn_weights_float.type_as(attn_weights)
        # attn = torch.bmm(attn_weights, v)
        attn = attn_weights_float @ v
        
        y = attn.transpose(1, 2).contiguous().view(B, T, C)  # re-assemble all head outputs side by side
        y = self.out_proj(y)
        return (y, present)