Spaces:
Runtime error
Runtime error
File size: 10,893 Bytes
35c1cfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import os
from pathlib import Path
from datetime import datetime
import torch
import time
from collections import OrderedDict
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
StateDictType,
FullStateDictConfig, # general model non-sharded, non-flattened params
LocalStateDictConfig, # flattened params, usable only by FSDP
# ShardedStateDictConfig, # un-flattened param but shards, usable by other parallel schemes.
)
from torch.distributed.checkpoint import (
FileSystemReader,
FileSystemWriter,
save_state_dict,
load_state_dict,
)
from torch.distributed.checkpoint.default_planner import (
DefaultSavePlanner,
DefaultLoadPlanner,
)
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
import torch.distributed.checkpoint as dist_cp
import torch.distributed as dist
import logging
logger = logging.getLogger(__name__)
def get_date_of_run():
"""create date and time for file save uniqueness
example: 2022-05-07-08:31:12_PM'
"""
date_of_run = datetime.now().strftime("%Y-%m-%d-%I:%M:%S_%p")
logger.info(f"--> current date and time of run = {date_of_run}")
return date_of_run
# create singleton saving policies to avoid making over and over
fullstate_save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
def load_model_sharded(model, rank, cfg):
# torch.manual_seed(103)
folder_name = (
cfg.dist_checkpoint_root_folder
+ "/"
+ cfg.dist_checkpoint_folder
+ "-"
+ cfg.model_name
)
load_dir = Path.cwd() / folder_name
if not load_dir.exists():
if rank == 0:
logger.info(f"No sharded_state_dict checkpoint directory found...skipping")
return
if rank == 0:
logger.info(f"loading model from model path: {load_dir} ")
reader = FileSystemReader(load_dir)
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
checkpoint = {"model": model.state_dict()}
if rank == 0:
ck = checkpoint.keys()
logger.info(f" checkpoint key len = {len(ck)} and \n keys = {ck}")
dist_cp.load_state_dict(
state_dict=checkpoint,
storage_reader=reader,
)
if rank == 0:
logger.info(f"checkpoint after load_state_dict()")
ck = checkpoint.keys()
logger.info(f" checkpoint key len = {len(ck)} and \n keys = {ck}")
model.load_state_dict(checkpoint["model"])
if rank == 0:
logger.info(f"Sharded state checkpoint loaded from {load_dir}")
def save_model_and_optimizer_sharded(model, rank, cfg,optim=None):
"""save model and optimizer via sharded_state_dict to save_dir"""
folder_name = (
cfg.dist_checkpoint_root_folder
+ "/"
+ cfg.dist_checkpoint_folder
+ "-"
+ cfg.model_name
)
save_dir = Path.cwd() / folder_name
if rank == 0:
logger.info(f"Saving model to {save_dir}")
distributed_writer = dist_cp.FileSystemWriter(
save_dir,
)
t0 = time.perf_counter()
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
state_dict = {"model": model.state_dict()}
if optim is not None:
state_dict["optim"] = FSDP.optim_state_dict(model, optim)
dist_cp.save_state_dict(
state_dict=state_dict,
storage_writer=distributed_writer,
planner=DefaultSavePlanner(),
)
dist.barrier()
t1 = time.perf_counter()
if rank == 0:
logger.info(f"Sharded state checkpoint saved to {save_dir}")
logger.info(
f"Checkpoint Time = {t1-t0:.4f}\n"
)
def save_model_checkpoint(
model,
optimizer,
rank,
cfg,
epoch=1,
):
"""saving model via rank0 cpu streaming and full_state_dict"""
with FSDP.state_dict_type(
model, StateDictType.FULL_STATE_DICT, fullstate_save_policy
):
cpu_state = model.state_dict()
logger.info(f"saving process: rank {rank} done w model state_dict\n")
if rank == 0:
logger.info(f"--> saving model ...")
# create save path
folder_name = (
cfg.dist_checkpoint_root_folder
+ "/"
+ cfg.dist_checkpoint_folder
+ "-"
+ cfg.model_name
)
save_dir = Path.cwd() / folder_name
save_dir.mkdir(parents=True, exist_ok=True)
save_name = cfg.model_name + "-" + str(epoch) + ".pt"
save_full_path = str(save_dir) + "/" + save_name
# save model
torch.save(cpu_state, save_full_path)
logger.info(f"model checkpoint saved for epoch {epoch} at {save_full_path}\n")
def save_model_checkpoint_deepspeed(model, cfg, checkpoint_name="checkpoint"):
logger.info(f"--> saving model ...")
save_dir = os.path.join(cfg.output_dir, checkpoint_name)
os.makedirs(save_dir, exist_ok=True)
# save_full_path = os.path.join(save_dir, "model.pt")
save_full_path = save_dir
model.save_checkpoint(save_dir=save_full_path, exclude_frozen_parameters=True)
logger.info(f"encoder saved at {save_full_path}")
def save_model_checkpoint_peft(model, optimizer, rank, cfg, checkpoint_name="checkpoint", save_trainable_only=True):
logger.info(f"--> saving model ...")
save_dir = os.path.join(cfg.output_dir, checkpoint_name)
os.makedirs(save_dir, exist_ok=True)
save_full_path = os.path.join(save_dir, "model.pt")
if cfg.enable_ddp:
model = model.module
cpu_state = model.state_dict()
if save_trainable_only:
state_dict = OrderedDict()
for name, para in model.named_parameters():
if para.requires_grad:
state_dict[name] = cpu_state[name]
else:
state_dict = cpu_state
torch.save(state_dict, save_full_path)
logger.info(f"encoder saved at {save_full_path}")
def save_model_checkpoint_peft_full_shard(model, optimizer, rank, cfg, epoch=0):
with FSDP.state_dict_type(
model, StateDictType.FULL_STATE_DICT, fullstate_save_policy
):
cpu_state = model.state_dict()
logger.info(f"saving process: rank {rank} done w model state_dict\n")
if rank == 0:
logger.info(f"--> saving model ...")
save_dir = os.path.join(cfg.output_dir, cfg.model_name, str(epoch+1))
os.makedirs(save_dir, exist_ok=True)
if not cfg.freeze_llm:
llm_dict = {}
for key in cpu_state.keys():
if key.startswith("llm."):
llm_dict[key] = cpu_state[key]
model.llm.save_pretrained(save_directory=save_dir, state_dict=llm_dict)
logger.info(f"llm saved at {save_dir}")
save_full_path = os.path.join(save_dir, "model.pt")
encoder_dict = {}
if not cfg.freeze_encoder:
for key in cpu_state.keys():
if key.startswith("encoder."):
encoder_dict[key] = cpu_state[key]
for key in cpu_state.keys():
if key.startswith("encoder_projector."):
encoder_dict[key] = cpu_state[key]
torch.save(encoder_dict, save_full_path)
logger.info(f"encoder saved at {save_full_path}")
logger.info(f"model checkpoint saved for epoch {epoch+1}\n")
dist.barrier()
def load_model_checkpoint(model, rank, cfg):
"""load local checkpoint to rank0 cpu
must be called * before * passing to FSDP"""
if rank != 0:
return
# where is the checkpoint at...
full_state_dict_model_path = (
Path.cwd() / cfg.checkpoint_folder / cfg.checkpoint_model_filename
)
# is it present...
if not full_state_dict_model_path.is_file():
logger.info(
f"model checkpoint {full_state_dict_model_path} not present. Returning..."
)
return
model_checkpoint = torch.load(full_state_dict_model_path)
# integrate into loaded model
model.load_state_dict(model_checkpoint)
logger.info(f"model checkpoint loaded to rank0 cpu")
def save_optimizer_checkpoint(model, optimizer, rank, cfg, epoch=1):
"""save optimizer state via full state dict"""
logger.info(f"--> optim state call on rank {rank}\n")
# pull all sharded optimizer states to rank0 cpu...
optim_state = FSDP.full_optim_state_dict(model, optimizer)
logger.info(f"optim state dict ready on {rank} and len of {len(optim_state)}\n")
if rank == 0:
folder_name = (
cfg.dist_checkpoint_root_folder
+ "/"
+ cfg.dist_checkpoint_folder
+ "-"
+ cfg.model_name
)
save_dir = Path.cwd() / folder_name
save_dir.mkdir(parents=True, exist_ok=True)
opt_save_name = (
"optimizer" + "-" + cfg.model_name + "-" + str(epoch) + ".pt"
)
opt_save_full_path = save_dir / opt_save_name
logger.info(f"--> saving optimizer state...")
torch.save(optim_state, opt_save_full_path)
logger.info(f"--> saved {opt_save_full_path} to disk")
def load_optimizer_checkpoint(model, optimizer_checkpoint_path, rank):
"""load an fsdp optimizer full_state checkpoint using scatter method
this ensures only rank 0 loads the optimizer state dict and scatters to other ranks
"""
if not optimizer_checkpoint_path.is_file():
logger.info(
f"warning - optimizer checkpoint not present {optimizer_checkpoint_path}. Returning. "
)
return
full_osd = None
if rank == 0:
full_osd = torch.load(optimizer_checkpoint_path)
# called from all ranks, though only rank0 has a valid param for full_osd
sharded_osd = FSDP.scatter_full_optim_state_dict(full_osd, model)
logger.info(f"optimizer shard loaded on rank {rank}")
def load_sharded_model_single_gpu(model,model_path):
reader = FileSystemReader(model_path)
state_dict = {
"model": model.state_dict()
}
dist_cp.load_state_dict(
state_dict=state_dict,
storage_reader= FileSystemReader(model_path),
no_dist=True,
)
model.load_state_dict(state_dict["model"])
logger.info(f"Sharded state checkpoint loaded from {model_path}")
return model
|