File size: 24,476 Bytes
35c1cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.

import os
import time
import yaml
from contextlib import nullcontext
from pathlib import Path
from pkg_resources import packaging


import functools
import hydra
import torch
import torch.cuda.nccl as nccl
import torch.distributed as dist
from omegaconf import DictConfig
from tqdm import tqdm
from transformers import LlamaTokenizer
from typing import Any, Callable, List, Optional
from textwrap import dedent
from hydra import version
from hydra.main import _UNSPECIFIED_, _get_rerun_conf
from hydra._internal.deprecation_warning import deprecation_warning
from hydra._internal.utils import _run_hydra, get_args_parser
from hydra.types import TaskFunction
from hydra.core.utils import _flush_loggers, configure_log


from slam_llm.utils.checkpoint_handler import (
    save_model_checkpoint,
    save_model_checkpoint_deepspeed,
    save_model_and_optimizer_sharded,
    save_optimizer_checkpoint,
    save_model_checkpoint_peft,
    save_model_checkpoint_peft_full_shard,
)
from slam_llm.policies import fpSixteen, bfSixteen_mixed, get_llama_wrapper
from slam_llm.utils.memory_utils import MemoryTrace
from slam_llm.utils.metric import compute_accuracy

import wandb
import logging

logger = logging.getLogger(__name__)

# For deepspeed --local_rank argument
def deepspeed_main_wrapper(

    config_path: Optional[str] = _UNSPECIFIED_,

    config_name: Optional[str] = None,

    version_base: Optional[str] = _UNSPECIFIED_,

) -> Callable[[TaskFunction], Any]:
    """

    :param config_path: The config path, a directory where Hydra will search for

                        config files. This path is added to Hydra's searchpath.

                        Relative paths are interpreted relative to the declaring python

                        file. Alternatively, you can use the prefix `pkg://` to specify

                        a python package to add to the searchpath.

                        If config_path is None no directory is added to the Config search path.

    :param config_name: The name of the config (usually the file name without the .yaml extension)

    """

    version.setbase(version_base)

    if config_path is _UNSPECIFIED_:
        if version.base_at_least("1.2"):
            config_path = None
        elif version_base is _UNSPECIFIED_:
            url = "https://hydra.cc/docs/1.2/upgrades/1.0_to_1.1/changes_to_hydra_main_config_path"
            deprecation_warning(
                message=dedent(
                    f"""

                config_path is not specified in @hydra.main().

                See {url} for more information."""
                ),
                stacklevel=2,
            )
            config_path = "."
        else:
            config_path = "."

    def main_decorator(task_function: TaskFunction) -> Callable[[], None]:
        @functools.wraps(task_function)
        def decorated_main(cfg_passthrough: Optional[DictConfig] = None) -> Any:
            if cfg_passthrough is not None:
                return task_function(cfg_passthrough)
            else:
                args_parser = get_args_parser()
                args_parser.add_argument("--local_rank", type=int, default=-1)
                args = args_parser.parse_args()
                if args.experimental_rerun is not None:
                    cfg = _get_rerun_conf(args.experimental_rerun, args.overrides)
                    task_function(cfg)
                    _flush_loggers()
                else:
                    # no return value from run_hydra() as it may sometime actually run the task_function
                    # multiple times (--multirun)
                    _run_hydra(
                        args=args,
                        args_parser=args_parser,
                        task_function=task_function,
                        config_path=config_path,
                        config_name=config_name,
                    )

        return decorated_main

    return main_decorator



def set_tokenizer_params(tokenizer: LlamaTokenizer):
    tokenizer.pad_token_id = 0
    tokenizer.padding_side = "left"


# Converting Bytes to Megabytes
def byte2mb(x):
    return int(x / 2**20)


def train(

    model,

    train_dataloader,

    eval_dataloader,

    tokenizer,

    gradient_accumulation_steps,

    train_config,

    log_config,

    local_rank=None,

    rank=None,

):
    """

    Trains the model on the given dataloader



    Args:

        model: The model to be trained

        train_dataloader: The dataloader containing the training data

        optimizer: The optimizer used for training

        lr_scheduler: The learning rate scheduler

        gradient_accumulation_steps: The number of steps to accumulate gradients before performing a backward/update operation

        num_epochs: The number of epochs to train for

        local_rank: The rank of the current node in a distributed setting

        train_config: The training configuration

        log_config: The logging configuration

        eval_dataloader: The dataloader containing the eval data

        tokenizer: tokenizer used in the eval for decoding the predicitons



    Returns: results dictionary containing average training and validation perplexity and loss

    """
    # Create a gradient scaler for fp16
    # if train_config.use_fp16 and train_config.enable_fsdp:
    #     scaler = ShardedGradScaler()
    # elif train_config.use_fp16 and not train_config.enable_fsdp:
    #     scaler = torch.cuda.amp.GradScaler()
    if train_config.enable_ddp:
        world_size = int(os.environ["WORLD_SIZE"])
    autocast = torch.cuda.amp.autocast if train_config.use_fp16 else nullcontext

    train_prep = []
    train_loss = []
    train_acc = []
    val_prep = []
    val_loss = []
    val_acc = []
    epoch_times = []
    checkpoint_times = []
    results = {}
    best_val_loss = float("inf")
    best_val_acc = 0.0
    for epoch in range(train_config.num_epochs):
        epoch_start_time = time.perf_counter()
        with MemoryTrace() as memtrace:  # track the memory usage
            model.train()
            total_loss = 0.0
            total_acc = 0.0
            total_length = len(train_dataloader) // gradient_accumulation_steps
            pbar = tqdm(
                colour="blue",
                desc=f"Training Epoch: {epoch+1}",
                total=total_length,
                dynamic_ncols=True,
            )
            for step, batch in enumerate(train_dataloader):
                for key in batch.keys():
                    batch[key] = (
                        batch[key].to(local_rank).half()
                        if isinstance(batch[key], torch.Tensor)
                        and batch[key].dtype == torch.float32
                        else (
                            batch[key].to(local_rank)
                            if isinstance(batch[key], torch.Tensor)
                            else batch[key]
                        )
                    )
                # with autocast():
                outputs, *rest = model(**batch)
                acc = rest[0] if rest else -1
                loss = outputs.loss

                loss = loss / gradient_accumulation_steps
                acc = acc / gradient_accumulation_steps

                if log_config.use_wandb and step % log_config.log_interval == 0:
                    if train_config.enable_fsdp or train_config.enable_ddp:
                        if rank == 0:
                            wandb.log(
                                {
                                    "train_inner/train_inner_loss": loss,
                                    "train_inner/train_inner_accuracy": acc,
                                },
                                step=(epoch * total_length + step),
                            )
                    else:
                        wandb.log(
                            {
                                "train_inner/train_inner_loss": loss,
                                "train_inner/train_inner_accuracy": acc,
                            },
                            step=(epoch * total_length + step),
                        )

                total_loss += loss.detach().float()
                total_acc += acc

                # deepspeed should handle gradient accumulate
                model.backward(loss)
                model.step()

                if (step + 1) % gradient_accumulation_steps == 0 or step == len(
                    train_dataloader
                ) - 1:
                    pbar.update(1)

                pbar.set_description(
                    f"Training Epoch: {epoch+1}/{train_config.num_epochs}, step {step}/{len(train_dataloader)} completed (loss: {loss.detach().float()}, acc: {acc})"
                )

                if (
                    (epoch * total_length + step + 1) % train_config.validation_interval
                    == 0
                    and train_config.run_validation
                ):
                    eval_ppl, eval_epoch_loss, *rest = evaluation(
                        model, train_config, eval_dataloader, local_rank, tokenizer
                    )
                    eval_epoch_acc = rest[0] if rest else -1
                    checkpoint_start_time = time.perf_counter()

                    if train_config.save_model and (eval_epoch_loss < best_val_loss):
                        checkpoint_name = f"{train_config.model_name}_epoch_{str(epoch+1)}_step_{step+1}"
                        save_model_checkpoint_deepspeed(
                            model, train_config, checkpoint_name
                        )

                    checkpoint_end_time = time.perf_counter() - checkpoint_start_time
                    checkpoint_times.append(checkpoint_end_time)
                    if eval_epoch_loss < best_val_loss:
                        best_val_loss = eval_epoch_loss
                        if rank == 0:
                            logger.info(
                                f"best eval loss on epoch {epoch+1} is {best_val_loss}"
                            )
                    val_loss.append(eval_epoch_loss)
                    val_prep.append(eval_ppl)
                    if rest:
                        if eval_epoch_acc > best_val_acc:
                            best_val_acc = eval_epoch_acc
                            if rank == 0:
                                logger.info(
                                    f"best eval acc on epoch {epoch+1} is {best_val_acc}"
                                )
                        val_acc.append(rest[0])
                    else:
                        val_acc.append(-1)

                    if log_config.use_wandb:
                        if rank == 0:
                            wandb.log(
                                {
                                    "valid/val_epoch_loss": eval_epoch_loss,
                                    "valid/val_perplexity": eval_ppl,
                                    "valid/best_val_loss": best_val_loss,
                                    "valid/val_accuracy": val_acc[-1],
                                    "valid/val_best_accuracy": best_val_acc,
                                }
                            )

                if train_config.run_test_during_validation:
                    if rank == 0:
                        logger.info("=====================================")
                        logger.info(
                            f"Test the file {train_config.run_test_during_validation_file} during validation:"
                        )
                        with autocast():
                            logger.info(
                                model.inference(
                                    train_config.run_test_during_validation_file,
                                    train_config.run_test_during_validation_prompt,
                                )
                            )
                        logger.info("=====================================")
                    dist.barrier()
            pbar.close()

        epoch_end_time = time.perf_counter() - epoch_start_time
        epoch_times.append(epoch_end_time)
        # Reducing total_loss across all devices if there's more than one CUDA device
        if torch.cuda.device_count() > 1 and (
            train_config.enable_fsdp or train_config.enable_ddp
        ):
            dist.all_reduce(total_loss, op=dist.ReduceOp.SUM)
            dist.all_reduce(total_acc, op=dist.ReduceOp.SUM)
        train_epoch_loss = total_loss / len(train_dataloader)
        train_epoch_acc = total_acc / len(train_dataloader)
        if train_config.enable_fsdp or train_config.enable_ddp:
            train_epoch_loss = train_epoch_loss / world_size
            train_epoch_acc = train_epoch_acc / world_size
        train_perplexity = torch.exp(train_epoch_loss)

        train_prep.append(train_perplexity)
        train_loss.append(train_epoch_loss)
        train_acc.append(train_epoch_acc)

        if log_config.use_wandb:
            if train_config.enable_fsdp or train_config.enable_ddp:
                if rank == 0:
                    wandb.log(
                        {
                            "train/train_perplexity": train_perplexity,
                            "train/train_epoch_loss": train_epoch_loss,
                            "train/train_epoch_acc": train_epoch_acc,
                        }
                    )
            else:
                wandb.log(
                    {
                        "train/train_perplexity": train_perplexity,
                        "train/train_epoch_loss": train_epoch_loss,
                        "train/train_epoch_acc": train_epoch_acc,
                    }
                )

        if rank == 0:
            logger.info(
                f"Epoch {epoch+1}: train_perplexity={train_perplexity:.4f}, train_epoch_loss={train_epoch_loss:.4f}, epoch time {epoch_end_time}s"
            )

        if rank == 0:
            logger.info(f"Max CUDA memory allocated was {memtrace.peak} GB")
            logger.info(f"Max CUDA memory reserved was {memtrace.max_reserved} GB")
            logger.info(f"Peak active CUDA memory was {memtrace.peak_active_gb} GB")
            logger.info(f"Cuda Malloc retires : {memtrace.cuda_malloc_retires}")
            logger.info(
                f"CPU Total Peak Memory consumed during the train (max): {memtrace.cpu_peaked + memtrace.cpu_begin} GB"
            )

        # Update the learning rate as needed
        # lr_scheduler.step()

    avg_epoch_time = sum(epoch_times) / len(epoch_times)
    avg_checkpoint_time = (
        sum(checkpoint_times) / len(checkpoint_times)
        if len(checkpoint_times) > 0
        else 0
    )
    avg_train_prep = sum(train_prep) / len(train_prep)
    avg_train_loss = sum(train_loss) / len(train_loss)
    avg_train_acc = sum(train_acc) / len(train_acc)
    if train_config.run_validation:
        avg_eval_prep = sum(val_prep) / len(val_prep)
        avg_eval_loss = sum(val_loss) / len(val_loss)
        avg_eval_acc = sum(val_acc) / len(val_acc)

    results["avg_train_prep"] = avg_train_prep
    results["avg_train_loss"] = avg_train_loss
    results["avg_train_acc"] = avg_train_acc
    if train_config.run_validation:
        results["avg_eval_prep"] = avg_eval_prep
        results["avg_eval_loss"] = avg_eval_loss
        results["avg_eval_acc"] = avg_eval_acc
    results["avg_epoch_time"] = avg_epoch_time
    results["avg_checkpoint_time"] = avg_checkpoint_time

    # saving the training params including fsdp setting for reference.
    # if (train_config.enable_fsdp or train_config.enable_ddp)and not train_config.use_peft:
    #     save_train_params(train_config, fsdp_config, rank)

    return results


def evaluation(model, train_config, eval_dataloader, local_rank, tokenizer):
    """

    Evaluates the model on the given dataloader



    Args:

        model: The model to evaluate

        eval_dataloader: The dataloader containing the evaluation data

        local_rank: The rank of the current node in a distributed setting

        tokenizer: The tokenizer used to decode predictions



    Returns: eval_ppl, eval_epoch_loss

    """
    world_size = int(os.environ["WORLD_SIZE"])
    model.eval()
    eval_preds = []
    eval_loss = 0.0  # Initialize evaluation loss
    eval_acc = 0.0
    autocast = (
        torch.cuda.amp.autocast if train_config.use_fp16 else nullcontext
    )  # (Fix:MZY): fix expected scalar type mismatch in norm

    with MemoryTrace() as memtrace:
        total_length = len(eval_dataloader)
        pbar = tqdm(
            colour="green",
            desc=f"Evaluating Epoch",
            total=total_length,
            dynamic_ncols=True,
        )
        for step, batch in enumerate(eval_dataloader):
            for key in batch.keys():
                batch[key] = (
                    batch[key].to(local_rank).half()
                    if isinstance(batch[key], torch.Tensor) and batch[key].dtype==torch.float32
                    else (
                        batch[key].to(local_rank) if isinstance(batch[key], torch.Tensor) else batch[key]
                    )
                )
            # Ensure no gradients are computed for this scope to save memory
            with torch.no_grad():
                # Forward pass and compute loss
                with autocast():  # (Fix:MZY): fix expected scalar type mismatch in norm
                    outputs, *rest = model(**batch)
                acc = rest[0] if rest else -1
                loss = outputs.loss

                eval_loss += loss.detach().float()
                eval_acc += acc
            # Decode predictions and add to evaluation predictions list
            preds = torch.argmax(outputs.logits, -1)
            eval_preds.extend(
                tokenizer.batch_decode(
                    preds.detach().cpu().numpy(), skip_special_tokens=True
                )
            )
            pbar.update(1)
            pbar.set_description(
                f"step: {step+1}/{total_length}, eval_loss: {eval_loss/(step+1):.4f}, eval_acc: {eval_acc/(step+1):.4f}"
            )

    # If there's more than one CUDA device, reduce evaluation loss across all devices
    if (
        torch.cuda.device_count() > 1
    ):
        dist.all_reduce(eval_loss, op=dist.ReduceOp.SUM)
        dist.all_reduce(eval_acc, op=dist.ReduceOp.SUM)

    # Compute average loss and perplexity
    eval_epoch_loss = eval_loss / len(eval_dataloader)
    eval_epoch_acc = eval_acc / len(eval_dataloader)
    eval_epoch_loss = eval_epoch_loss / world_size
    eval_epoch_acc = eval_epoch_acc / world_size
    eval_ppl = torch.exp(eval_epoch_loss)

    # Print evaluation metrics
    if local_rank == 0:
        logger.info(f" {eval_ppl=} {eval_epoch_loss=} {eval_epoch_acc=}")

    model.train()
    return eval_ppl, eval_epoch_loss, eval_epoch_acc


def freeze_transformer_layers(model, num_layer):
    for i, layer in enumerate(model.model.layers):
        if i < num_layer:
            for param in layer.parameters():
                param.requires_grad = False


def check_frozen_layers_peft_model(model):
    for i, layer in enumerate(model.base_model.model.model.layers):
        for name, param in layer.named_parameters():
            logger.info(
                f"Layer {i}, parameter {name}: requires_grad = {param.requires_grad}"
            )


def setup():
    """Initialize the process group for distributed training"""
    dist.init_process_group("nccl")


def setup_environ_flags(rank):
    """Set environment flags for debugging purposes"""
    os.environ["TORCH_SHOW_CPP_STACKTRACES"] = str(1)
    os.environ["NCCL_ASYNC_ERROR_HANDLING"] = str(1)
    # os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
    # This flag will help with CUDA memory fragmentations that can lead into OOM in some cases.
    # Note this is only availble in PyTorch Nighlies (as of July 30 2023)
    # os.environ['PYTORCH_CUDA_ALLOC_CONF']='expandable_segments:True'
    if rank == 0:
        logger.info(f"--> Running with torch dist debug set to detail")


def cleanup():
    """Clean up the process group after training"""
    dist.destroy_process_group()


def clear_gpu_cache(rank=None):
    """Clear the GPU cache for all ranks"""
    if rank == 0:
        logger.info(f"Clearing GPU cache for all ranks")
    torch.cuda.empty_cache()


def get_parameter_dtypes(model):
    """Get the data types of model parameters"""
    parameter_dtypes = {}
    for name, parameter in model.named_parameters():
        parameter_dtypes[name] = parameter.dtype
    return parameter_dtypes


def print_model_size(model, config, rank: int = 0) -> None:
    """

    log model name, the number of trainable parameters and initialization time.



    Args:

        model: The PyTorch model.

        model_name (str): Name of the model.

        init_time_start (float): Initialization start time.

        init_time_end (float): Initialization end time.

        rank (int, optional): Current process's rank. Defaults to 0.

    """
    if rank == 0:
        logger.info(f"--> Model {config.model_name}")
        total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
        logger.info(
            f"--> {config.model_name} has {total_params / 1e6} Million params\n"
        )


def print_module_size(module, module_name, rank: int = 0) -> None:
    """

    Print module name, the number of trainable parameters and initialization time.



    Args:

        module: The PyTorch module.

        module_name (str): Name of the model.

        rank (int, optional): Current process's rank. Defaults to 0.

    """
    if rank == 0:
        logger.info(f"--> Module {module_name}")
        total_params = sum(p.numel() for p in module.parameters() if p.requires_grad)
        logger.info(f"--> {module_name} has {total_params / 1e6} Million params\n")


def save_train_params(train_config, fsdp_config, rank):
    """

    This function saves the train_config and FSDP config into a train_params.yaml.

    This will be used by converter script in the inference folder to fetch the HF model name or path.

    It also would be hepful as a log for future references.

    """
    # Convert the train_config and fsdp_config objects to dictionaries,
    # converting all values to strings to ensure they can be serialized into a YAML file
    train_config_dict = {
        k: str(v) for k, v in vars(train_config).items() if not k.startswith("__")
    }
    fsdp_config_dict = {
        k: str(v) for k, v in vars(fsdp_config).items() if not k.startswith("__")
    }
    # Merge the two dictionaries into one
    train_params_dict = {**train_config_dict, **fsdp_config_dict}
    # Construct the folder name (follwoing FSDP checkpointing style) using properties of the train_config object
    folder_name = (
        train_config.dist_checkpoint_root_folder
        + "/"
        + train_config.dist_checkpoint_folder
        + "-"
        + train_config.model_name
    )

    save_dir = Path.cwd() / folder_name
    # If the directory does not exist, create it
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    # Convert the dictionary to a YAML string
    config_yaml = yaml.dump(train_params_dict, indent=4)
    file_name = os.path.join(save_dir, "train_params.yaml")

    # Check if there's a directory with the same name as the file
    if os.path.isdir(file_name):
        logger.info(f"Error: {file_name} is a directory, not a file.")
    else:
        # Write the YAML string to the file
        with open(file_name, "w") as f:
            f.write(config_yaml)
        if rank == 0:
            logger.info(f"training params are saved in {file_name}")