Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import sys,logging | |
import contextlib | |
import tempfile | |
from argparse import Namespace | |
from typing import Any, Optional | |
import torch | |
import torch.nn as nn | |
from dataclasses import dataclass, field | |
from fairseq import checkpoint_utils, tasks, utils | |
from fairseq.dataclass import FairseqDataclass | |
from fairseq.dataclass.utils import convert_namespace_to_omegaconf | |
from fairseq.models import BaseFairseqModel, FairseqEncoder, FairseqEncoderDecoderModel, register_model | |
from fairseq.models.hubert.hubert import MASKING_DISTRIBUTION_CHOICES | |
from fairseq.tasks import FairseqTask | |
from omegaconf import II, MISSING | |
DBG=True if len(sys.argv) == 1 else False | |
if DBG: | |
from hubert import AVHubertModel | |
from decoder import TransformerDecoder | |
else: | |
from .hubert import AVHubertModel | |
from .decoder import TransformerDecoder | |
logger = logging.getLogger(__name__) | |
class AVHubertAsrConfig(FairseqDataclass): | |
w2v_path: str = field( | |
default=MISSING, metadata={"help": "path to hubert model"} | |
) | |
no_pretrained_weights: bool = field( | |
default=False, | |
metadata={"help": "if true, does not load pretrained weights"}, | |
) | |
dropout_input: float = field( | |
default=0.0, | |
metadata={"help": "dropout to apply to the input (after feat extr)"}, | |
) | |
final_dropout: float = field( | |
default=0.0, | |
metadata={ | |
"help": "dropout after transformer and before final projection" | |
}, | |
) | |
dropout: float = field( | |
default=0.0, | |
metadata={"help": "dropout probability inside hubert model"}, | |
) | |
attention_dropout: float = field( | |
default=0.0, | |
metadata={ | |
"help": "dropout probability for attention weights " | |
"inside hubert model" | |
}, | |
) | |
activation_dropout: float = field( | |
default=0.0, | |
metadata={ | |
"help": "dropout probability after activation in FFN " | |
"inside hubert model" | |
}, | |
) | |
# masking | |
apply_mask: bool = field( | |
default=False, metadata={"help": "apply masking during fine-tuning"} | |
) | |
mask_length: int = field( | |
default=10, metadata={"help": "repeat the mask indices multiple times"} | |
) | |
mask_prob: float = field( | |
default=0.5, | |
metadata={ | |
"help": "probability of replacing a token with mask " | |
"(normalized by length)" | |
}, | |
) | |
mask_selection: MASKING_DISTRIBUTION_CHOICES = field( | |
default="static", metadata={"help": "how to choose masks"} | |
) | |
mask_other: float = field( | |
default=0, | |
metadata={ | |
"help": "secondary mask argument " | |
"(used for more complex distributions), " | |
"see help in compute_mask_indices" | |
}, | |
) | |
no_mask_overlap: bool = field( | |
default=False, metadata={"help": "whether to allow masks to overlap"} | |
) | |
# channel masking | |
mask_channel_length: int = field( | |
default=10, | |
metadata={"help": "length of the mask for features (channels)"}, | |
) | |
mask_channel_prob: float = field( | |
default=0.0, | |
metadata={"help": "probability of replacing a feature with 0"}, | |
) | |
mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( | |
default="static", | |
metadata={"help": "how to choose mask length for channel masking"}, | |
) | |
mask_channel_other: float = field( | |
default=0, | |
metadata={ | |
"help": "secondary mask argument " | |
"(used for more complex distributions), " | |
"see help in compute_mask_indices" | |
}, | |
) | |
no_mask_channel_overlap: bool = field( | |
default=False, | |
metadata={"help": "whether to allow channel masks to overlap"}, | |
) | |
freeze_finetune_updates: int = field( | |
default=0, | |
metadata={"help": "dont finetune hubert for this many updates"}, | |
) | |
feature_grad_mult: float = field( | |
default=0.0, | |
metadata={"help": "reset feature grad mult in hubert to this"}, | |
) | |
layerdrop: float = field( | |
default=0.0, | |
metadata={"help": "probability of dropping a layer in hubert"}, | |
) | |
normalize: bool = II("task.normalize") | |
data: str = II("task.data") | |
# this holds the loaded hubert args | |
w2v_args: Any = None | |
class AVHubertCtcConfig(AVHubertAsrConfig): | |
pass | |
class AVHubertCtc(BaseFairseqModel): | |
def __init__(self, cfg: AVHubertCtcConfig, w2v_encoder: BaseFairseqModel): | |
super().__init__() | |
self.cfg = cfg | |
self.w2v_encoder = w2v_encoder | |
def upgrade_state_dict_named(self, state_dict, name): | |
super().upgrade_state_dict_named(state_dict, name) | |
return state_dict | |
def build_model(cls, cfg: AVHubertCtcConfig, task: FairseqTask): | |
"""Build a new model instance.""" | |
w2v_encoder = HubertEncoder(cfg, task.target_dictionary) | |
return cls(cfg, w2v_encoder) | |
def get_normalized_probs(self, net_output, log_probs): | |
"""Get normalized probabilities (or log probs) from a net's output.""" | |
logits = net_output["encoder_out"] | |
if log_probs: | |
return utils.log_softmax(logits.float(), dim=-1) | |
else: | |
return utils.softmax(logits.float(), dim=-1) | |
def get_logits(self, net_output): | |
logits = net_output["encoder_out"] | |
padding = net_output["encoder_padding_mask"] | |
if padding is not None and padding.any(): | |
padding = padding.T | |
logits[padding][..., 0] = 0 | |
logits[padding][..., 1:] = float("-inf") | |
return logits | |
def forward(self, **kwargs): | |
x = self.w2v_encoder(**kwargs) | |
return x | |
class AVHubertSeq2SeqConfig(AVHubertAsrConfig): | |
decoder_embed_dim: int = field( | |
default=768, metadata={"help": "decoder embedding dimension"} | |
) | |
decoder_ffn_embed_dim: int = field( | |
default=3072, metadata={"help": "decoder embedding dimension for FFN"} | |
) | |
decoder_layers: int = field( | |
default=6, metadata={"help": "num of decoder layers"} | |
) | |
decoder_layerdrop: float = field( | |
default=0.0, metadata={"help": "decoder layerdrop chance"} | |
) | |
decoder_attention_heads: int = field( | |
default=4, metadata={"help": "num decoder attention heads"} | |
) | |
decoder_learned_pos: bool = field( | |
default=False, | |
metadata={"help": "use learned positional embeddings in the decoder"}, | |
) | |
decoder_normalize_before: bool = field( | |
default=False, | |
metadata={"help": "apply layernorm before each decoder block"}, | |
) | |
no_token_positional_embeddings: bool = field( | |
default=False, | |
metadata={ | |
"help": "if set, disables positional embeddings " | |
"(outside self attention)" | |
}, | |
) | |
decoder_dropout: float = field( | |
default=0.0, metadata={"help": "dropout probability in the decoder"} | |
) | |
decoder_attention_dropout: float = field( | |
default=0.0, | |
metadata={ | |
"help": "dropout probability for attention weights " | |
"inside the decoder" | |
}, | |
) | |
decoder_activation_dropout: float = field( | |
default=0.0, | |
metadata={ | |
"help": "dropout probability after activation in FFN " | |
"inside the decoder" | |
}, | |
) | |
max_target_positions: int = field( | |
default=2048, metadata={"help": "max target positions"} | |
) | |
share_decoder_input_output_embed: bool = field( | |
default=False, | |
metadata={"help": "share decoder input and output embeddings"}, | |
) | |
no_scale_embedding: bool = field(default=True, metadata={'help': 'scale embedding'}) | |
class HubertEncoder(FairseqEncoder): | |
def __init__(self, cfg: AVHubertAsrConfig, tgt_dict=None): | |
self.apply_mask = cfg.apply_mask | |
arg_overrides = { | |
"dropout": cfg.dropout, | |
"activation_dropout": cfg.activation_dropout, | |
"dropout_input": cfg.dropout_input, | |
"attention_dropout": cfg.attention_dropout, | |
"mask_length": cfg.mask_length, | |
"mask_prob": cfg.mask_prob, | |
"mask_selection": cfg.mask_selection, | |
"mask_other": cfg.mask_other, | |
"no_mask_overlap": cfg.no_mask_overlap, | |
"mask_channel_length": cfg.mask_channel_length, | |
"mask_channel_prob": cfg.mask_channel_prob, | |
"mask_channel_selection": cfg.mask_channel_selection, | |
"mask_channel_other": cfg.mask_channel_other, | |
"no_mask_channel_overlap": cfg.no_mask_channel_overlap, | |
"encoder_layerdrop": cfg.layerdrop, | |
"feature_grad_mult": cfg.feature_grad_mult, | |
} | |
if cfg.w2v_args is None: | |
state = checkpoint_utils.load_checkpoint_to_cpu( | |
cfg.w2v_path, arg_overrides | |
) | |
w2v_args = state.get("cfg", None) | |
if w2v_args is None: | |
w2v_args = convert_namespace_to_omegaconf(state["args"]) | |
cfg.w2v_args = w2v_args | |
else: | |
state = None | |
w2v_args = cfg.w2v_args | |
if isinstance(w2v_args, Namespace): | |
cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf( | |
w2v_args | |
) | |
assert cfg.normalize == w2v_args.task.normalize, ( | |
"Fine-tuning works best when data normalization is the same. " | |
"Please check that --normalize is set or unset for " | |
"both pre-training and here" | |
) | |
w2v_args.task.data = cfg.data | |
task = tasks.setup_task(w2v_args.task) | |
model = task.build_model(w2v_args.model) | |
if state is not None and not cfg.no_pretrained_weights: | |
# set strict=False because we omit some modules | |
model.load_state_dict(state["model"], strict=False) | |
model.remove_pretraining_modules() | |
super().__init__(task.source_dictionary) | |
d = model.encoder.embedding_dim | |
self.w2v_model = model | |
self.final_dropout = nn.Dropout(cfg.final_dropout) | |
self.freeze_finetune_updates = cfg.freeze_finetune_updates | |
self.num_updates = 0 | |
if tgt_dict is not None: | |
self.proj = Linear(d, len(tgt_dict)) | |
elif getattr(cfg, "decoder_embed_dim", d) != d: | |
self.proj = Linear(d, cfg.decoder_embed_dim) | |
else: | |
self.proj = None | |
def set_num_updates(self, num_updates): | |
"""Set the number of parameters updates.""" | |
super().set_num_updates(num_updates) | |
self.num_updates = num_updates | |
def forward(self, source, padding_mask, tbc=True, **kwargs): | |
w2v_args = { | |
"source": source, | |
"padding_mask": padding_mask, | |
"mask": self.apply_mask and self.training, | |
} | |
ft = self.freeze_finetune_updates <= self.num_updates | |
with torch.no_grad() if not ft else contextlib.ExitStack(): | |
x, padding_mask = self.w2v_model.extract_finetune(**w2v_args) | |
if tbc: | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
x = self.final_dropout(x) | |
if self.proj: | |
x = self.proj(x) | |
return { | |
"encoder_out": x, # T x B x C | |
"encoder_padding_mask": padding_mask, # B x T | |
"padding_mask": padding_mask, | |
} | |
def reorder_encoder_out(self, encoder_out, new_order): | |
if encoder_out["encoder_out"] is not None: | |
encoder_out["encoder_out"] = encoder_out[ | |
"encoder_out" | |
].index_select(1, new_order) | |
if encoder_out["encoder_padding_mask"] is not None: | |
encoder_out["encoder_padding_mask"] = encoder_out[ | |
"encoder_padding_mask" | |
].index_select(0, new_order) | |
return encoder_out | |
def max_positions(self): | |
"""Maximum input length supported by the encoder.""" | |
return None | |
def upgrade_state_dict_named(self, state_dict, name): | |
return state_dict | |
class HubertEncoderWrapper(FairseqEncoder): | |
def __init__(self, w2v_model): | |
super().__init__(None) | |
self.w2v_model = w2v_model | |
def forward(self, source, padding_mask, **kwargs): | |
w2v_args = { | |
"source": source, | |
"padding_mask": padding_mask, | |
} | |
x, padding_mask = self.w2v_model.extract_finetune(**w2v_args) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) #torch.Size([106, 1, 1024]) | |
return { | |
"encoder_out": x, # T x B x C | |
"encoder_padding_mask": padding_mask, # B x T | |
"padding_mask": padding_mask | |
} | |
def reorder_encoder_out(self, encoder_out, new_order): | |
if encoder_out["encoder_out"] is not None: | |
encoder_out["encoder_out"] = encoder_out[ | |
"encoder_out" | |
].index_select(1, new_order) | |
if encoder_out["encoder_padding_mask"] is not None: | |
encoder_out["encoder_padding_mask"] = encoder_out[ | |
"encoder_padding_mask" | |
].index_select(0, new_order) | |
if encoder_out["padding_mask"] is not None: | |
encoder_out["padding_mask"] = encoder_out[ | |
"padding_mask" | |
].index_select(0, new_order) | |
return encoder_out | |
class AVHubertSeq2Seq(FairseqEncoderDecoderModel): | |
def __init__(self, encoder, decoder, tgt_dict, cfg): | |
super().__init__(encoder, decoder) | |
self.cfg = cfg | |
self.freeze_finetune_updates = cfg.freeze_finetune_updates | |
def build_model(cls, cfg, task): | |
"""Build a new model instance.""" | |
arg_overrides = { | |
"dropout": cfg.dropout, | |
"activation_dropout": cfg.activation_dropout, | |
"dropout_input": cfg.dropout_input, | |
"attention_dropout": cfg.attention_dropout, | |
"mask_length": cfg.mask_length, | |
"mask_prob": cfg.mask_prob, | |
"mask_selection": cfg.mask_selection, | |
"mask_other": cfg.mask_other, | |
"no_mask_overlap": cfg.no_mask_overlap, | |
"mask_channel_length": cfg.mask_channel_length, | |
"mask_channel_prob": cfg.mask_channel_prob, | |
"mask_channel_selection": cfg.mask_channel_selection, | |
"mask_channel_other": cfg.mask_channel_other, | |
"no_mask_channel_overlap": cfg.no_mask_channel_overlap, | |
"encoder_layerdrop": cfg.layerdrop, | |
"feature_grad_mult": cfg.feature_grad_mult, | |
} | |
if cfg.w2v_args is None: | |
state = checkpoint_utils.load_checkpoint_to_cpu( | |
cfg.w2v_path, arg_overrides | |
) | |
w2v_args = state.get("cfg", None) | |
if w2v_args is None: | |
w2v_args = convert_namespace_to_omegaconf(state["args"]) | |
cfg.w2v_args = w2v_args | |
else: | |
state = None | |
w2v_args = cfg.w2v_args | |
if isinstance(w2v_args, Namespace): | |
cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf( | |
w2v_args | |
) | |
assert cfg.normalize == w2v_args.task.normalize, ( | |
"Fine-tuning works best when data normalization is the same. " | |
"Please check that --normalize is set or unset for " | |
"both pre-training and here" | |
) | |
w2v_args.task.data = cfg.data | |
task_pretrain = tasks.setup_task(w2v_args.task) | |
if state is not None: | |
task_pretrain.load_state_dict(state['task_state']) | |
encoder_ = task_pretrain.build_model(w2v_args.model) | |
encoder = HubertEncoderWrapper(encoder_) | |
if state is not None and not cfg.no_pretrained_weights: | |
# set strict=False because we omit some modules | |
del state['model']['mask_emb'] | |
encoder.w2v_model.load_state_dict(state["model"], strict=False) | |
encoder.w2v_model.remove_pretraining_modules() | |
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary | |
def build_embedding(dictionary, embed_dim): | |
num_embeddings = len(dictionary) | |
padding_idx = dictionary.pad() | |
emb = Embedding(num_embeddings, embed_dim, padding_idx=padding_idx) | |
return emb | |
decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim) | |
decoder = TransformerDecoder(cfg, tgt_dict, decoder_embed_tokens) | |
return AVHubertSeq2Seq(encoder, decoder, tgt_dict, cfg) | |
def forward(self, **kwargs): | |
# ft = self.freeze_finetune_updates <= self.num_updates | |
# with torch.no_grad() if not ft else contextlib.ExitStack(): | |
# output = self.encoder(**kwargs) | |
with torch.no_grad(): | |
output = self.encoder(**kwargs) #encoder_out,encoder_padding_mask,padding_mask | |
# decoder_out = self.decoder(prev_output_tokens=kwargs['prev_output_tokens'], encoder_out=output) | |
return output | |
def upgrade_state_dict_named(self, state_dict, name): | |
super().upgrade_state_dict_named(state_dict, name) | |
return state_dict | |
def set_num_updates(self, num_updates): | |
"""Set the number of parameters updates.""" | |
super().set_num_updates(num_updates) | |
self.num_updates = num_updates | |
def Embedding(num_embeddings, embedding_dim, padding_idx): | |
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) | |
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) | |
nn.init.constant_(m.weight[padding_idx], 0) | |
return m | |
def Linear(in_features, out_features, bias=True): | |
m = nn.Linear(in_features, out_features, bias) | |
nn.init.xavier_uniform_(m.weight) | |
if bias: | |
nn.init.constant_(m.bias, 0.0) | |
return m | |