# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import math import torch.nn as nn import pdb logger = logging.getLogger(__name__) def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def downsample_basic_block( inplanes, outplanes, stride ): return nn.Sequential( nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(outplanes), ) def downsample_basic_block_v2( inplanes, outplanes, stride ): return nn.Sequential( nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False), nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(outplanes), ) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, relu_type = 'relu' ): super(BasicBlock, self).__init__() assert relu_type in ['relu','prelu'] self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) if relu_type == 'relu': self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) elif relu_type == 'prelu': self.relu1 = nn.PReLU(num_parameters=planes) self.relu2 = nn.PReLU(num_parameters=planes) else: raise Exception('relu type not implemented') self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu2(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, relu_type = 'relu', gamma_zero = False, avg_pool_downsample = False): self.inplanes = 64 self.relu_type = relu_type self.gamma_zero = gamma_zero self.downsample_block = downsample_basic_block_v2 if avg_pool_downsample else downsample_basic_block super(ResNet, self).__init__() self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d(1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() if self.gamma_zero: for m in self.modules(): if isinstance(m, BasicBlock ): m.bn2.weight.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = self.downsample_block( inplanes = self.inplanes, outplanes = planes * block.expansion, stride = stride ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, relu_type = self.relu_type)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, relu_type = self.relu_type)) return nn.Sequential(*layers) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) return x class ResEncoder(nn.Module): def __init__(self, relu_type, weights): super(ResEncoder, self).__init__() self.frontend_nout = 64 self.backend_out = 512 frontend_relu = nn.PReLU(num_parameters=self.frontend_nout) if relu_type == 'prelu' else nn.ReLU() self.frontend3D = nn.Sequential( nn.Conv3d(1, self.frontend_nout, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=(2, 3, 3), bias=False), nn.BatchNorm3d(self.frontend_nout), frontend_relu, nn.MaxPool3d( kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1))) self.trunk = ResNet(BasicBlock, [2, 2, 2, 2], relu_type=relu_type) if weights is not None: logger.info(f"Load {weights} for resnet") std = torch.load(weights, map_location=torch.device('cpu'))['model_state_dict'] frontend_std, trunk_std = OrderedDict(), OrderedDict() for key, val in std.items(): new_key = '.'.join(key.split('.')[1:]) if 'frontend3D' in key: frontend_std[new_key] = val if 'trunk' in key: trunk_std[new_key] = val self.frontend3D.load_state_dict(frontend_std) self.trunk.load_state_dict(trunk_std) def forward(self, x): B, C, T, H, W = x.size() x = self.frontend3D(x) Tnew = x.shape[2] x = self.threeD_to_2D_tensor(x) x = self.trunk(x) x = x.view(B, Tnew, x.size(1)) x = x.transpose(1, 2).contiguous() return x def threeD_to_2D_tensor(self, x): n_batch, n_channels, s_time, sx, sy = x.shape x = x.transpose(1, 2).contiguous() return x.reshape(n_batch*s_time, n_channels, sx, sy)