Spaces:
Build error
Build error
File size: 1,405 Bytes
20cc436 acf7f61 20cc436 acf7f61 20cc436 acf7f61 20cc436 fc24e3f acf7f61 20cc436 acf7f61 20cc436 fc24e3f acf7f61 fc24e3f acf7f61 fc24e3f 20cc436 acf7f61 20cc436 fc24e3f 20cc436 fc24e3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import torch
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import gradio as gr
import numpy as np
import tempfile
import os
# Set device to GPU if available, otherwise use CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
# Function to generate caption for the image using BLIP
def generate_caption(image):
inputs = processor(images=image, return_tensors="pt").to(device)
output_ids = model.generate(**inputs)
return processor.decode(output_ids[0], skip_special_tokens=True)
# Function to process images and generate captions
def process_images(image_files):
captions = []
for image_file in image_files:
image = Image.open(image_file).convert('RGB')
caption = generate_caption(image)
captions.append(caption)
return captions
# Setup Gradio interface
iface = gr.Interface(
fn=process_images,
inputs=[gr.Files(label="Upload Image Files")],
outputs=[gr.Textbox(label="Image Captions")],
title="Image Captioning with BLIP",
description="Upload images and generate captions using the BLIP model from Hugging Face."
)
iface.launch(debug=True)
|