abiabidali's picture
Update app.py
20cc436 verified
raw
history blame
3.87 kB
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import gradio as gr
import numpy as np
import tempfile
import time
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def load_model(scale):
model = RealESRGAN(device, scale=scale)
weights_path = f'weights/RealESRGAN_x{scale}.pth'
try:
model.load_weights(weights_path, download=True)
print(f"Weights for scale {scale} loaded successfully.")
except Exception as e:
print(f"Error loading weights for scale {scale}: {e}")
model.load_weights(weights_path, download=False)
return model
model2 = load_model(2)
model4 = load_model(4)
model8 = load_model(8)
def enhance_image(image, scale):
try:
print(f"Enhancing image with scale {scale}...")
start_time = time.time()
image_np = np.array(image.convert('RGB'))
print(f"Image converted to numpy array: shape {image_np.shape}, dtype {image_np.dtype}")
if scale == '2x':
result = model2.predict(image_np)
elif scale == '4x':
result = model4.predict(image_np)
else:
result = model8.predict(image_np)
enhanced_image = Image.fromarray(np.uint8(result))
print(f"Image enhanced in {time.time() - start_time:.2f} seconds")
return enhanced_image
except Exception as e:
print(f"Error enhancing image: {e}")
return image
def muda_dpi(input_image, dpi):
dpi_tuple = (dpi, dpi)
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
image.save(temp_file, format='PNG', dpi=dpi_tuple)
temp_file.close()
return Image.open(temp_file.name)
def resize_image(input_image, width, height):
image = Image.fromarray(input_image.astype('uint8'), 'RGB')
resized_image = image.resize((width, height))
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
resized_image.save(temp_file, format='PNG')
temp_file.close()
return Image.open(temp_file.name)
def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width, height):
processed_images = []
file_paths = []
for image_file in image_files:
input_image = np.array(Image.open(image_file).convert('RGB'))
original_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
if enhance:
original_image = enhance_image(original_image, scale)
if adjust_dpi:
original_image = muda_dpi(np.array(original_image), dpi)
if resize:
original_image = resize_image(np.array(original_image), width, height)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
original_image.save(temp_file.name)
processed_images.append(original_image)
file_paths.append(temp_file.name)
return processed_images, file_paths
iface = gr.Interface(
fn=process_images,
inputs=[
gr.Files(label="Upload Image Files"), # Use gr.Files for multiple file uploads
gr.Checkbox(label="Enhance Images (ESRGAN)"),
gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'),
gr.Checkbox(label="Adjust DPI"),
gr.Number(label="DPI", value=300),
gr.Checkbox(label="Resize"),
gr.Number(label="Width", value=512),
gr.Number(label="Height", value=512)
],
outputs=[
gr.Gallery(label="Final Images"), # Use gr.Gallery to display multiple images
gr.Files(label="Download Final Images")
],
title="Multi-Image Enhancer",
description="Upload multiple images (.jpg, .png), enhance using AI, adjust DPI, resize, and download the final results."
)
iface.launch(debug=True)