abiabidali commited on
Commit
9b417f1
·
verified ·
1 Parent(s): 53cd4b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -111
app.py CHANGED
@@ -1,111 +0,0 @@
1
- import torch
2
- from PIL import Image
3
- from RealESRGAN import RealESRGAN
4
- import gradio as gr
5
- import numpy as np
6
- import tempfile
7
- import time
8
-
9
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
10
-
11
- def load_model(scale):
12
- model = RealESRGAN(device, scale=scale)
13
- weights_path = f'weights/RealESRGAN_x{scale}.pth'
14
- try:
15
- model.load_weights(weights_path, download=True)
16
- print(f"Weights for scale {scale} loaded successfully.")
17
- except Exception as e:
18
- print(f"Error loading weights for scale {scale}: {e}")
19
- model.load_weights(weights_path, download=False)
20
- return model
21
-
22
- model2 = load_model(2)
23
- model4 = load_model(4)
24
- model8 = load_model(8)
25
-
26
- def enhance_image(image, scale):
27
- try:
28
- print(f"Enhancing image with scale {scale}...")
29
- start_time = time.time()
30
- image_np = np.array(image.convert('RGB'))
31
- print(f"Image converted to numpy array: shape {image_np.shape}, dtype {image_np.dtype}")
32
-
33
- if scale == '2x':
34
- result = model2.predict(image_np)
35
- elif scale == '4x':
36
- result = model4.predict(image_np)
37
- else:
38
- result = model8.predict(image_np)
39
-
40
- enhanced_image = Image.fromarray(np.uint8(result))
41
- print(f"Image enhanced in {time.time() - start_time:.2f} seconds")
42
- return enhanced_image
43
- except Exception as e:
44
- print(f"Error enhancing image: {e}")
45
- return image
46
-
47
- def muda_dpi(input_image, dpi):
48
- dpi_tuple = (dpi, dpi)
49
- image = Image.fromarray(input_image.astype('uint8'), 'RGB')
50
- temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
51
- image.save(temp_file, format='PNG', dpi=dpi_tuple)
52
- temp_file.close()
53
- return Image.open(temp_file.name)
54
-
55
- def resize_image(input_image, width, height):
56
- image = Image.fromarray(input_image.astype('uint8'), 'RGB')
57
- resized_image = image.resize((width, height))
58
- temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
59
- resized_image.save(temp_file, format='PNG')
60
- temp_file.close()
61
- return Image.open(temp_file.name)
62
-
63
- def process_images(image_files, enhance, scale, adjust_dpi, dpi, resize, width, height):
64
- processed_images = []
65
- file_paths = []
66
-
67
- for image_file in image_files:
68
- input_image = np.array(Image.open(image_file).convert('RGB'))
69
- original_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
70
-
71
- if enhance:
72
- original_image = enhance_image(original_image, scale)
73
-
74
- if adjust_dpi:
75
- original_image = muda_dpi(np.array(original_image), dpi)
76
-
77
- if resize:
78
- original_image = resize_image(np.array(original_image), width, height)
79
-
80
- temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
81
- original_image.save(temp_file.name)
82
- processed_images.append(original_image)
83
- file_paths.append(temp_file.name)
84
-
85
- return processed_images, file_paths
86
-
87
- iface = gr.Interface(
88
- fn=process_images,
89
- inputs=[
90
- gr.Files(label="Upload Image Files"), # Use gr.Files for multiple file uploads
91
- gr.Checkbox(label="Enhance Images (ESRGAN)"),
92
- gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'),
93
- gr.Checkbox(label="Adjust DPI"),
94
- gr.Number(label="DPI", value=300),
95
- gr.Checkbox(label="Resize"),
96
- gr.Number(label="Width", value=512),
97
- gr.Number(label="Height", value=512)
98
- ],
99
- outputs=[
100
- gr.Gallery(label="Final Images"), # Use gr.Gallery to display multiple images
101
- gr.Files(label="Download Final Images")
102
- ],
103
- title="Multi-Image Enhancer",
104
- description="Upload multiple images (.jpg, .png), enhance using AI, adjust DPI, resize, and download the final results.",
105
- examples=[
106
- ["gatuno.JPG"]
107
- ]
108
- )
109
-
110
- iface.launch(debug=True)
111
-