|
import os |
|
os.system("git clone https://github.com/bryandlee/animegan2-pytorch") |
|
|
|
os.system("gdown https://drive.google.com/uc?id=1WK5Mdt6mwlcsqCZMHkCUSDJxN1UyFi0-") |
|
os.system("gdown https://drive.google.com/uc?id=18H3iK09_d54qEDoWIc82SyWB2xun4gjU") |
|
|
|
import sys |
|
sys.path.append("animegan2-pytorch") |
|
|
|
import torch |
|
torch.set_grad_enabled(False) |
|
|
|
from model import Generator |
|
|
|
device = "cpu" |
|
|
|
model = Generator().eval().to(device) |
|
model.load_state_dict(torch.load("face_paint_512_v2_0.pt")) |
|
|
|
from PIL import Image |
|
from torchvision.transforms.functional import to_tensor, to_pil_image |
|
|
|
def face2paint( |
|
img: Image.Image, |
|
size: int, |
|
side_by_side: bool = True, |
|
) -> Image.Image: |
|
|
|
w, h = img.size |
|
s = min(w, h) |
|
img = img.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2)) |
|
img = img.resize((size, size), Image.LANCZOS) |
|
|
|
input = to_tensor(img).unsqueeze(0) * 2 - 1 |
|
output = model(input.to(device)).cpu()[0] |
|
|
|
if side_by_side: |
|
output = torch.cat([input[0], output], dim=2) |
|
|
|
output = (output * 0.5 + 0.5).clip(0, 1) |
|
|
|
return to_pil_image(output) |
|
|
|
|
|
|
|
|
|
import os |
|
import dlib |
|
import collections |
|
from typing import Union, List |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
def get_dlib_face_detector(predictor_path: str = "shape_predictor_68_face_landmarks.dat"): |
|
|
|
if not os.path.isfile(predictor_path): |
|
model_file = "shape_predictor_68_face_landmarks.dat.bz2" |
|
os.system(f"wget http://dlib.net/files/{model_file}") |
|
os.system(f"bzip2 -dk {model_file}") |
|
|
|
detector = dlib.get_frontal_face_detector() |
|
shape_predictor = dlib.shape_predictor(predictor_path) |
|
|
|
def detect_face_landmarks(img: Union[Image.Image, np.ndarray]): |
|
if isinstance(img, Image.Image): |
|
img = np.array(img) |
|
faces = [] |
|
dets = detector(img) |
|
for d in dets: |
|
shape = shape_predictor(img, d) |
|
faces.append(np.array([[v.x, v.y] for v in shape.parts()])) |
|
return faces |
|
|
|
return detect_face_landmarks |
|
|
|
|
|
def display_facial_landmarks( |
|
img: Image, |
|
landmarks: List[np.ndarray], |
|
fig_size=[15, 15] |
|
): |
|
plot_style = dict( |
|
marker='o', |
|
markersize=4, |
|
linestyle='-', |
|
lw=2 |
|
) |
|
pred_type = collections.namedtuple('prediction_type', ['slice', 'color']) |
|
pred_types = { |
|
'face': pred_type(slice(0, 17), (0.682, 0.780, 0.909, 0.5)), |
|
'eyebrow1': pred_type(slice(17, 22), (1.0, 0.498, 0.055, 0.4)), |
|
'eyebrow2': pred_type(slice(22, 27), (1.0, 0.498, 0.055, 0.4)), |
|
'nose': pred_type(slice(27, 31), (0.345, 0.239, 0.443, 0.4)), |
|
'nostril': pred_type(slice(31, 36), (0.345, 0.239, 0.443, 0.4)), |
|
'eye1': pred_type(slice(36, 42), (0.596, 0.875, 0.541, 0.3)), |
|
'eye2': pred_type(slice(42, 48), (0.596, 0.875, 0.541, 0.3)), |
|
'lips': pred_type(slice(48, 60), (0.596, 0.875, 0.541, 0.3)), |
|
'teeth': pred_type(slice(60, 68), (0.596, 0.875, 0.541, 0.4)) |
|
} |
|
|
|
|
|
for face in landmarks: |
|
for pred_type in pred_types.values(): |
|
ax.plot( |
|
face[pred_type.slice, 0], |
|
face[pred_type.slice, 1], |
|
color=pred_type.color, **plot_style |
|
) |
|
|
|
import PIL.Image |
|
import PIL.ImageFile |
|
import numpy as np |
|
import scipy.ndimage |
|
|
|
|
|
def align_and_crop_face( |
|
img: Image.Image, |
|
landmarks: np.ndarray, |
|
expand: float = 1.0, |
|
output_size: int = 1024, |
|
transform_size: int = 4096, |
|
enable_padding: bool = True, |
|
): |
|
|
|
|
|
lm = landmarks |
|
lm_chin = lm[0 : 17] |
|
lm_eyebrow_left = lm[17 : 22] |
|
lm_eyebrow_right = lm[22 : 27] |
|
lm_nose = lm[27 : 31] |
|
lm_nostrils = lm[31 : 36] |
|
lm_eye_left = lm[36 : 42] |
|
lm_eye_right = lm[42 : 48] |
|
lm_mouth_outer = lm[48 : 60] |
|
lm_mouth_inner = lm[60 : 68] |
|
|
|
|
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
eye_to_eye = eye_right - eye_left |
|
mouth_left = lm_mouth_outer[0] |
|
mouth_right = lm_mouth_outer[6] |
|
mouth_avg = (mouth_left + mouth_right) * 0.5 |
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
x /= np.hypot(*x) |
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) |
|
x *= expand |
|
y = np.flipud(x) * [-1, 1] |
|
c = eye_avg + eye_to_mouth * 0.1 |
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
qsize = np.hypot(*x) * 2 |
|
|
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5)) |
|
if shrink > 1: |
|
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) |
|
img = img.resize(rsize, PIL.Image.ANTIALIAS) |
|
quad /= shrink |
|
qsize /= shrink |
|
|
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) |
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) |
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: |
|
img = img.crop(crop) |
|
quad -= crop[0:2] |
|
|
|
|
|
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) |
|
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) |
|
if enable_padding and max(pad) > border - 4: |
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) |
|
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') |
|
h, w, _ = img.shape |
|
y, x, _ = np.ogrid[:h, :w, :1] |
|
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])) |
|
blur = qsize * 0.02 |
|
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) |
|
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0) |
|
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') |
|
quad += pad[:2] |
|
|
|
|
|
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) |
|
if output_size < transform_size: |
|
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) |
|
|
|
return img |
|
|
|
|
|
import requests |
|
|
|
def inference(image): |
|
img = image |
|
face_detector = get_dlib_face_detector() |
|
landmarks = face_detector(img) |
|
|
|
display_facial_landmarks(img, landmarks, fig_size=[5, 5]) |
|
|
|
for landmark in landmarks: |
|
face = align_and_crop_face(img, landmark, expand=1.3) |
|
out = face2paint(face, 512) |
|
|
|
return out |
|
|
|
|
|
|
|
iface = gr.Interface(inference, "image", "image") |
|
iface.launch() |
|
|