File size: 3,323 Bytes
176aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\RAVI\\AppData\\Roaming\\Python\\Python39\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "from fastai.vision.all import *\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pathlib"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def new_path(cls, *args, **kwargs):\n",
    "       \n",
    "        cls = pathlib.WindowsPath\n",
    "        self = cls._from_parts(args)\n",
    "        if not self._flavour.is_supported:\n",
    "            raise NotImplementedError(\"cannot instantiate %r on your system\"\n",
    "                                      % (cls.__name__,))\n",
    "        return self\n",
    "Path.__new__=new_path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def is_cat(x): return x[0].isupper() \n",
    "\n",
    "learn = load_learner('model.pkl')\n",
    "categories = ('Dog', 'Cat')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "def classify_image(img):\n",
    "    pred,idx,probs = learn.predict(img)\n",
    "    return dict(zip(categories, map(float, probs)))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7860/\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "(<gradio.routes.App at 0x1be650336a0>, 'http://127.0.0.1:7860/', None)"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\n",
    "image = gr.Image(shape=(192,192))\n",
    "label = gr.Label()\n",
    "examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']\n",
    "\n",
    "intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
    "intf.launch(inline=False)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.9.4 64-bit",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.4"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "11938c6bc6919ae2720b4d5011047913343b08a43b18698fd82dedb0d4417594"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}