import cv2 from model import LSCCNN from download_from_google import download_file_from_google_drive import os import gradio as gr from time import time if not os.path.exists("weights/weights.pth"): os.mkdir("weights") output = 'weights/weights.pth' file_id = '1QbPwRXcrONMuBL_39gvnvGGsFCnNyjEm' download_file_from_google_drive(file_id, output) checkpoint_path = './weights/weights.pth' network = LSCCNN(checkpoint_path=checkpoint_path) network.cuda() network.eval() emoji = cv2.imread("images/blm_fist.png", -1) def predict(img): if img.shape[2] > 3: img = img[:, :, :3] pred_dot_map, pred_box_map, img_out = \ network.predict_single_image(img, emoji, nms_thresh=0.25) return img_out thumbnail="https://i.ibb.co/bzwSBzw/Screen-Shot-2020-08-24-at-7-05-36-AM.png" examples=[ ["images/1.png"], ["images/2.png"], ["images/3.png"], ["images/4.png"], ["images/5.png"] ] gr.Interface(predict, "image", "image", title="BLM Photo " "Anonymization", description="Anonymize photos to protect BLM " "protesters. Faces will be covered with the " "black fist emoji. Model developed by the Stanford ML Group and LSC-CNN.", examples=examples, thumbnail=thumbnail).launch()