Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- README.md +3 -9
- requirements.txt +1 -0
- workshops.py +721 -0
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: pink
|
5 |
-
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Schedule_Buddy_Updated
|
3 |
+
app_file: workshops.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
+
sdk_version: 5.7.1
|
|
|
|
|
6 |
---
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
supabase
|
workshops.py
ADDED
@@ -0,0 +1,721 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import copy
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
from collections import Counter
|
6 |
+
import random
|
7 |
+
import re
|
8 |
+
from datetime import date
|
9 |
+
import supabase
|
10 |
+
import json
|
11 |
+
|
12 |
+
###### OG FUNCTIONS TO GENERATE SCHEDULES ######
|
13 |
+
# CONSTANTS
|
14 |
+
NAME_COL = 'Juggler_Name'
|
15 |
+
NUM_WORKSHOPS_COL = 'Num_Workshops'
|
16 |
+
AVAIL_COL = 'Availability'
|
17 |
+
DESCRIP_COL = 'Workshop_Descriptions'
|
18 |
+
DELIMITER = ';'
|
19 |
+
|
20 |
+
class Schedule:
|
21 |
+
def __init__(self, timeslots: dict):
|
22 |
+
self.num_timeslots_filled = 0
|
23 |
+
self.total_num_workshops = 0
|
24 |
+
|
25 |
+
for time,instructors in timeslots.items():
|
26 |
+
curr_len = len(instructors)
|
27 |
+
if curr_len > 0:
|
28 |
+
self.num_timeslots_filled += 1
|
29 |
+
self.total_num_workshops += curr_len
|
30 |
+
|
31 |
+
self.timeslots = timeslots
|
32 |
+
|
33 |
+
def add(self, person: str, time: str):
|
34 |
+
self.total_num_workshops += 1
|
35 |
+
if len(self.timeslots[time]) == 0:
|
36 |
+
self.num_timeslots_filled += 1
|
37 |
+
self.timeslots[time].append(person)
|
38 |
+
|
39 |
+
def remove(self, person: str, time: str):
|
40 |
+
self.total_num_workshops -= 1
|
41 |
+
if len(self.timeslots[time]) == 1:
|
42 |
+
self.num_timeslots_filled -= 1
|
43 |
+
self.timeslots[time].remove(person)
|
44 |
+
|
45 |
+
|
46 |
+
def print(self):
|
47 |
+
print(f"# timeslots filled: {self.num_timeslots_filled}")
|
48 |
+
print(f"# workshops: {self.total_num_workshops}")
|
49 |
+
for time,instructors in self.timeslots.items():
|
50 |
+
print(f"{time}: {', '.join(instructors)}")
|
51 |
+
|
52 |
+
|
53 |
+
# Returns True if the person can teach during the slot, and False otherwise
|
54 |
+
def can_teach(person: str, slot: list, capacity: int) -> bool:
|
55 |
+
if len(slot) == capacity or len(slot) > capacity:
|
56 |
+
return False
|
57 |
+
|
58 |
+
# No one can teach two workshops at once
|
59 |
+
if person in slot:
|
60 |
+
return False
|
61 |
+
|
62 |
+
return True
|
63 |
+
|
64 |
+
|
65 |
+
# Extracts relevant information from the df with availability and puts it into a useable format
|
66 |
+
def convert_df(df):
|
67 |
+
people = []
|
68 |
+
# Key: person's name
|
69 |
+
# Value: a list of their availability
|
70 |
+
availability = {}
|
71 |
+
seen = set()
|
72 |
+
for row in range(len(df)):
|
73 |
+
# TODO: make sure no people with the same name fill out the form
|
74 |
+
name = df.loc[row, NAME_COL]
|
75 |
+
|
76 |
+
number = df.loc[row, NUM_WORKSHOPS_COL]
|
77 |
+
if number == 1:
|
78 |
+
people.append(name)
|
79 |
+
|
80 |
+
# Add people who are teaching multiple workshops to the list more than once
|
81 |
+
else:
|
82 |
+
for i in range(number):
|
83 |
+
people.append(name)
|
84 |
+
|
85 |
+
curr_avail = df.loc[row, AVAIL_COL]
|
86 |
+
curr_avail = curr_avail.split(DELIMITER)
|
87 |
+
curr_avail = [elem.strip() for elem in curr_avail]
|
88 |
+
availability[name] = curr_avail
|
89 |
+
|
90 |
+
return people, availability
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
# Makes a dictionary where each key is a timeslot and each value is a list.
|
95 |
+
# If there's no partial schedule, each list will be empty.
|
96 |
+
# If there's a partial schedule, each list will include the people teaching during that slot.
|
97 |
+
def initialize_timeslots(df) -> dict:
|
98 |
+
all_timeslots = set()
|
99 |
+
availability = df[AVAIL_COL]
|
100 |
+
for elem in availability:
|
101 |
+
curr_list = elem.split(DELIMITER)
|
102 |
+
for inner in curr_list:
|
103 |
+
all_timeslots.add(inner.strip())
|
104 |
+
|
105 |
+
to_return = {}
|
106 |
+
for slot in all_timeslots:
|
107 |
+
to_return[slot] = []
|
108 |
+
|
109 |
+
return to_return
|
110 |
+
|
111 |
+
|
112 |
+
# Recursive function that generates all possible schedules
|
113 |
+
def find_all_schedules(people: list, availability: dict, schedule_obj: Schedule, capacity: int, schedules: list, max_timeslots_list: list, max_workshops_list: list) -> None:
|
114 |
+
if schedule_obj.num_timeslots_filled > max_timeslots_list[0] or schedule_obj.num_timeslots_filled == max_timeslots_list[0]:
|
115 |
+
schedules.append(copy.deepcopy(schedule_obj))
|
116 |
+
max_timeslots_list[0] = schedule_obj.num_timeslots_filled
|
117 |
+
# Keep track of total number of workshops taught
|
118 |
+
if schedule_obj.total_num_workshops > max_workshops_list[0] or schedule_obj.total_num_workshops == max_workshops_list[0]:
|
119 |
+
max_workshops_list[0] = schedule_obj.total_num_workshops
|
120 |
+
|
121 |
+
# Base case
|
122 |
+
if len(people) == 0:
|
123 |
+
return
|
124 |
+
|
125 |
+
|
126 |
+
# Recursive cases
|
127 |
+
person = people[0]
|
128 |
+
|
129 |
+
for time in availability[person]:
|
130 |
+
if can_teach(person, schedule_obj.timeslots[time], capacity):
|
131 |
+
# Choose (put that person in that timeslot)
|
132 |
+
schedule_obj.add(person, time)
|
133 |
+
|
134 |
+
# Explore (assign everyone else to timeslots based on that decision)
|
135 |
+
if len(people) == 1:
|
136 |
+
find_all_schedules([], availability, schedule_obj, capacity, schedules, max_timeslots_list, max_workshops_list)
|
137 |
+
|
138 |
+
else:
|
139 |
+
find_all_schedules(people[1:len(people)], availability, schedule_obj, capacity, schedules, max_timeslots_list, max_workshops_list)
|
140 |
+
|
141 |
+
# Unchoose (remove that person from the timeslot)
|
142 |
+
schedule_obj.remove(person, time)
|
143 |
+
# NOTE: this will not generate a full timeslot, but could still lead to a good schedule
|
144 |
+
else:
|
145 |
+
if len(people) == 1:
|
146 |
+
find_all_schedules([], availability, schedule_obj, capacity, schedules, max_timeslots_list, max_workshops_list)
|
147 |
+
else:
|
148 |
+
find_all_schedules(people[1:len(people)], availability, schedule_obj, capacity, schedules, max_timeslots_list, max_workshops_list)
|
149 |
+
|
150 |
+
return
|
151 |
+
|
152 |
+
|
153 |
+
# Puts the schedule in the correct order
|
154 |
+
def my_sort(curr_sched: dict, og_slots: list):
|
155 |
+
# example {'4 pm': ['logan', 'andrew'], '1 pm': ['graham', 'joyce'], '3 pm': ['logan', 'dan'], '2 pm': ['graham', 'dan']}
|
156 |
+
to_return = {}
|
157 |
+
for elem in og_slots:
|
158 |
+
if elem in curr_sched:
|
159 |
+
to_return[elem] = curr_sched[elem]
|
160 |
+
else:
|
161 |
+
to_return[elem] = []
|
162 |
+
return to_return
|
163 |
+
|
164 |
+
|
165 |
+
# Makes an organized DataFrame given a list of schedules
|
166 |
+
def make_df(schedules: list, descrip_dict: dict, og_slots: list):
|
167 |
+
all_times = []
|
168 |
+
all_instructors = []
|
169 |
+
|
170 |
+
count = 1
|
171 |
+
|
172 |
+
for i in range (len(schedules)):
|
173 |
+
curr_sched = schedules[i]
|
174 |
+
|
175 |
+
#sorted_dict = dict(sorted(curr_sched.items(), key=lambda item: item[0]))
|
176 |
+
sorted_dict = my_sort(curr_sched, og_slots)
|
177 |
+
curr_times = sorted_dict.keys()
|
178 |
+
curr_instructors = sorted_dict.values()
|
179 |
+
|
180 |
+
# Include an empty row between schedules
|
181 |
+
if count != 1:
|
182 |
+
all_times.append("")
|
183 |
+
all_instructors.append("")
|
184 |
+
|
185 |
+
if len(schedules) > 1 or len(schedules) == 1:
|
186 |
+
all_times.append(f"Schedule #{count}")
|
187 |
+
all_instructors.append("")
|
188 |
+
count += 1
|
189 |
+
|
190 |
+
for slot in curr_times:
|
191 |
+
all_times.append(slot)
|
192 |
+
|
193 |
+
for instructors in curr_instructors:
|
194 |
+
if len(descrip_dict) == 0:
|
195 |
+
all_instructors.append("; ". join(instructors))
|
196 |
+
|
197 |
+
if len(descrip_dict) > 0:
|
198 |
+
big_str = ""
|
199 |
+
|
200 |
+
for person in instructors:
|
201 |
+
if person in descrip_dict:
|
202 |
+
descrip = descrip_dict[person]
|
203 |
+
else:
|
204 |
+
descrip = "Workshop"
|
205 |
+
|
206 |
+
# {descrip} is a list bc they want to teach multiple workshops
|
207 |
+
if '\n' in descrip:
|
208 |
+
new_str = f"\n\n- {person}:\n{descrip}"
|
209 |
+
else:
|
210 |
+
new_str = f"\n\n- {person}: {descrip}"
|
211 |
+
|
212 |
+
big_str += new_str
|
213 |
+
|
214 |
+
all_instructors.append(big_str.strip())
|
215 |
+
|
216 |
+
if len(curr_instructors) == 0:
|
217 |
+
all_instructors.append('N/A')
|
218 |
+
|
219 |
+
|
220 |
+
new_df = pd.DataFrame({
|
221 |
+
"Schedule": all_times,
|
222 |
+
"Instructor(s)": all_instructors
|
223 |
+
})
|
224 |
+
new_df['Instructor(s)'] = new_df['Instructor(s)'].astype(str)
|
225 |
+
|
226 |
+
return new_df, count - 1
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
# Makes a dictionary where each key is the instructor's name and
|
233 |
+
# the value is the workshop(s) they're teaching
|
234 |
+
def get_description_dict(df):
|
235 |
+
new_dict = {}
|
236 |
+
for row in range(len(df)):
|
237 |
+
name = df.loc[row, NAME_COL]
|
238 |
+
new_dict[name] = df.loc[row, DESCRIP_COL]
|
239 |
+
return new_dict
|
240 |
+
|
241 |
+
|
242 |
+
# Classifies schedules into two categories: complete and incomplete:
|
243 |
+
# Complete = everyone is teaching desired number of timeslots and each timeslot is filled
|
244 |
+
# NOTE: I'm using "valid" instead of "complete" as a variable name so that I don't mix it up
|
245 |
+
# Incomplete = not complete
|
246 |
+
def classify_schedules(people: list, schedules: list, partial_names: list, total_timeslots: int, max_timeslots_filled: int) -> tuple:
|
247 |
+
valid_schedules = []
|
248 |
+
|
249 |
+
# Key: score
|
250 |
+
# Value: schedules with that score
|
251 |
+
incomplete_schedules = {}
|
252 |
+
|
253 |
+
# Get frequency of items in the list
|
254 |
+
# Key: person
|
255 |
+
# Value: number of workshops they WANT to teach
|
256 |
+
pref_dict = Counter(people)
|
257 |
+
|
258 |
+
pref_dict.update(Counter(partial_names))
|
259 |
+
|
260 |
+
all_names = pref_dict.keys()
|
261 |
+
|
262 |
+
|
263 |
+
## Evaluate each schedule ##
|
264 |
+
overall_max = 0 # changes throughout the function
|
265 |
+
|
266 |
+
for sched in schedules:
|
267 |
+
if sched.num_timeslots_filled != max_timeslots_filled:
|
268 |
+
continue
|
269 |
+
# Key: person
|
270 |
+
# Value: how many workshops they're ACTUALLY teaching in this schedule
|
271 |
+
freq_dict = {}
|
272 |
+
for name in all_names:
|
273 |
+
freq_dict[name] = 0
|
274 |
+
|
275 |
+
for timeslot, instructor_list in sched.timeslots.items():
|
276 |
+
for instructor in instructor_list:
|
277 |
+
if instructor in freq_dict:
|
278 |
+
freq_dict[instructor] += 1
|
279 |
+
else:
|
280 |
+
print("there is a serious issue!!!!")
|
281 |
+
|
282 |
+
# See if everyone is teaching their desired number of workshops
|
283 |
+
everyone_is_teaching = True
|
284 |
+
for teacher, freq in freq_dict.items():
|
285 |
+
if freq != pref_dict[teacher]:
|
286 |
+
#print(f"teacher: {teacher}. preference: {pref_dict[teacher]}. actual frequency: {freq}")
|
287 |
+
everyone_is_teaching = False
|
288 |
+
break
|
289 |
+
|
290 |
+
filled_all_timeslots = (sched.num_timeslots_filled == total_timeslots)
|
291 |
+
if everyone_is_teaching and filled_all_timeslots:
|
292 |
+
valid_schedules.append(sched)
|
293 |
+
else:
|
294 |
+
# No need to add to incomplete_schedules if there's at least one valid schedule
|
295 |
+
if len(valid_schedules) > 0:
|
296 |
+
continue
|
297 |
+
#print(f"teaching desired number of timeslots: {everyone_is_teaching}. At least one workshop per slot: {filled_all_timeslots}.\n{sched}\n")
|
298 |
+
if sched.num_timeslots_filled > overall_max or sched.num_timeslots_filled == overall_max:
|
299 |
+
overall_max = sched.num_timeslots_filled
|
300 |
+
|
301 |
+
if sched.num_timeslots_filled not in incomplete_schedules:
|
302 |
+
incomplete_schedules[sched.num_timeslots_filled] = []
|
303 |
+
incomplete_schedules[sched.num_timeslots_filled].append(sched)
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
if len(valid_schedules) > 0:
|
308 |
+
return valid_schedules, []
|
309 |
+
else:
|
310 |
+
return [], incomplete_schedules[overall_max]
|
311 |
+
|
312 |
+
|
313 |
+
|
314 |
+
# Parameters: schedules that have the max number of timeslots filled
|
315 |
+
# Max number of workshops taught in filled timeslots
|
316 |
+
# Returns: a list of all schedules that have the max number of workshops
|
317 |
+
# To make it less overwhelming, it will return {cutoff} randomly
|
318 |
+
def get_best_schedules(schedules: list, cutoff: str, max_workshops: int) -> list:
|
319 |
+
cutoff = int(cutoff)
|
320 |
+
seen = []
|
321 |
+
best_schedules = []
|
322 |
+
|
323 |
+
for sched in schedules:
|
324 |
+
if sched.total_num_workshops != max_workshops:
|
325 |
+
continue
|
326 |
+
|
327 |
+
if sched in seen:
|
328 |
+
continue
|
329 |
+
else:
|
330 |
+
seen.append(sched)
|
331 |
+
best_schedules.append(sched.timeslots)
|
332 |
+
|
333 |
+
if cutoff == -1:
|
334 |
+
return best_schedules
|
335 |
+
else:
|
336 |
+
if len(best_schedules) > cutoff:
|
337 |
+
# Sample without replacement
|
338 |
+
return random.sample(best_schedules, cutoff)
|
339 |
+
else:
|
340 |
+
return best_schedules
|
341 |
+
|
342 |
+
|
343 |
+
# Big wrapper function that calls the other functions
|
344 |
+
def main(df, capacity:int, num_results: int, og_slots: list):
|
345 |
+
descrip_dict = get_description_dict(df)
|
346 |
+
|
347 |
+
# Convert the df with everyone's availability to a usable format
|
348 |
+
res = convert_df(df)
|
349 |
+
people = res[0]
|
350 |
+
availability = res[1]
|
351 |
+
print(availability)
|
352 |
+
|
353 |
+
partial_names = []
|
354 |
+
|
355 |
+
timeslots = initialize_timeslots(df)
|
356 |
+
|
357 |
+
schedules = []
|
358 |
+
schedule_obj = Schedule(timeslots)
|
359 |
+
max_timeslots_list = [0]
|
360 |
+
max_workshops_list = [0]
|
361 |
+
|
362 |
+
find_all_schedules(people, availability, schedule_obj, capacity, schedules, max_timeslots_list, max_workshops_list)
|
363 |
+
|
364 |
+
total_timeslots = len(timeslots)
|
365 |
+
|
366 |
+
|
367 |
+
res = classify_schedules(people, schedules, partial_names, total_timeslots, max_timeslots_list[0])
|
368 |
+
valid_schedules = res[0]
|
369 |
+
decent_schedules = res[1]
|
370 |
+
|
371 |
+
|
372 |
+
# Return schedules
|
373 |
+
if len(valid_schedules) > 0:
|
374 |
+
best_schedules = get_best_schedules(valid_schedules, num_results, max_workshops_list[0])
|
375 |
+
res = make_df(best_schedules, descrip_dict, og_slots)
|
376 |
+
new_df = res[0]
|
377 |
+
count = res[1]
|
378 |
+
if count == 1:
|
379 |
+
results = "Good news! I was able to make a complete schedule."
|
380 |
+
else:
|
381 |
+
results = "Good news! I was able to make multiple complete schedules."
|
382 |
+
|
383 |
+
else:
|
384 |
+
best_schedules = get_best_schedules(decent_schedules, num_results, max_workshops_list[0])
|
385 |
+
res = make_df(best_schedules, descrip_dict, og_slots)
|
386 |
+
new_df = res[0]
|
387 |
+
count = res[1]
|
388 |
+
beginning = "Here"
|
389 |
+
if count == 1:
|
390 |
+
results = f"{beginning} is the best option."
|
391 |
+
else:
|
392 |
+
results = f"{beginning} are the best options."
|
393 |
+
|
394 |
+
#results += "(Remember that \"complete\" schedules are ones where everyone is teaching their desired number of workshops and every timeslot is filled.)"
|
395 |
+
|
396 |
+
|
397 |
+
directory = os.path.abspath(os.getcwd())
|
398 |
+
path = directory + "/schedule.csv"
|
399 |
+
new_df.to_csv(path, index=False)
|
400 |
+
return results, new_df, path
|
401 |
+
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
##### ALL THE NEW STUFF WITH SUPABASE ETC. #####
|
406 |
+
### CONSTANTS ###
|
407 |
+
NAME_COL = 'Juggler_Name'
|
408 |
+
NUM_WORKSHOPS_COL = 'Num_Workshops'
|
409 |
+
AVAIL_COL = 'Availability'
|
410 |
+
DESCRIP_COL = 'Workshop_Descriptions'
|
411 |
+
EMAIL_COL = 'Email'
|
412 |
+
DELIMITER = ';'
|
413 |
+
ALERT_TIME = None # leave warnings on screen indefinitely
|
414 |
+
FORM_NOT_FOUND = 'Form not found'
|
415 |
+
INCORRECT_PASSWORD = "The password is incorrect. Please check the password and try again. If you don't remember your password, please email [email protected]."
|
416 |
+
NUM_ROWS = 1
|
417 |
+
NUM_COLS_SCHEDULES = 2
|
418 |
+
NUM_COLS_ALL_RESPONSES = 4
|
419 |
+
NUM_RESULTS = 10 # randomly get {NUM_RESULTS} results
|
420 |
+
|
421 |
+
|
422 |
+
theme = gr.themes.Soft(
|
423 |
+
primary_hue="cyan",
|
424 |
+
secondary_hue="pink",
|
425 |
+
font=[gr.themes.GoogleFont('sans-serif'), 'ui-sans-serif', 'system-ui', 'Montserrat'],
|
426 |
+
)
|
427 |
+
|
428 |
+
### Connect to Supabase ###
|
429 |
+
URL = os.environ['URL']
|
430 |
+
API_KEY = os.environ['API_KEY']
|
431 |
+
client = supabase.create_client(URL, API_KEY)
|
432 |
+
|
433 |
+
|
434 |
+
|
435 |
+
|
436 |
+
### DEFINE FUNCTIONS ###
|
437 |
+
## Multi-purpose function ##
|
438 |
+
'''
|
439 |
+
Returns a lowercased and stripped version of the schedule name.
|
440 |
+
Returns: str
|
441 |
+
'''
|
442 |
+
def standardize(schedule_name: str):
|
443 |
+
return schedule_name.lower().strip()
|
444 |
+
|
445 |
+
|
446 |
+
|
447 |
+
|
448 |
+
|
449 |
+
|
450 |
+
## Functions to manage/generate schedules ##
|
451 |
+
'''
|
452 |
+
Uses the name and password to get the form.
|
453 |
+
Makes the buttons and other elements visible on the page.
|
454 |
+
Returns:
|
455 |
+
gr.Button: corresponds to find_form_btn
|
456 |
+
gr.Column: corresponds to all_responses_group
|
457 |
+
gr.Column: generate_schedules_explanation
|
458 |
+
gr.Row: corresponds to generate_btns
|
459 |
+
gr.Column: corresponds to open_close_btn_col
|
460 |
+
gr.Button: corresponds to open_close_btn
|
461 |
+
'''
|
462 |
+
def make_visible(schedule_name:str, password: str):
|
463 |
+
skip_output = gr.Button(), gr.Column(), gr.Column(), gr.Row(), gr.Column(), gr.Button()
|
464 |
+
|
465 |
+
if len(schedule_name) == 0:
|
466 |
+
gr.Warning('Please enter the form name.', ALERT_TIME)
|
467 |
+
return skip_output
|
468 |
+
if len(password) == 0:
|
469 |
+
gr.Warning('Please enter the password.', ALERT_TIME)
|
470 |
+
return skip_output
|
471 |
+
|
472 |
+
|
473 |
+
response = client.table('Forms').select('password', 'status').eq('form_name', standardize(schedule_name)).execute()
|
474 |
+
data = response.data
|
475 |
+
|
476 |
+
if len(data) > 0:
|
477 |
+
my_dict = data[0]
|
478 |
+
if password != my_dict['password']:
|
479 |
+
gr.Warning(INCORRECT_PASSWORD, ALERT_TIME)
|
480 |
+
return skip_output
|
481 |
+
else:
|
482 |
+
if my_dict['status'] == 'open':
|
483 |
+
gr.Info('', ALERT_TIME, title='Btw, the form is currently OPEN.')
|
484 |
+
return gr.Button(variant='secondary'), gr.Column(visible=True), gr.Column(visible=True), gr.Row(visible=True), gr.Column(visible=True), gr.Button("Close Form", visible=True)
|
485 |
+
|
486 |
+
elif my_dict['status'] == 'closed':
|
487 |
+
gr.Info('', ALERT_TIME, title='Btw, the form is currently CLOSED.')
|
488 |
+
return gr.Button(variant='secondary'), gr.Column(visible=True), gr.Column(visible=True), gr.Row(visible=True),gr.Column(visible=True), gr.Button("Open Form", visible=True)
|
489 |
+
|
490 |
+
else:
|
491 |
+
gr.Warning(f"There is no form called \"{schedule_name}\". Please check the spelling and try again.", ALERT_TIME)
|
492 |
+
return skip_output
|
493 |
+
|
494 |
+
|
495 |
+
|
496 |
+
|
497 |
+
'''
|
498 |
+
Makes a blank schedule that we can return to prevent things from breaking.
|
499 |
+
Returns: tuple with 3 elements:
|
500 |
+
0: str indicating that the form wasn't found
|
501 |
+
1: the DataFrame
|
502 |
+
2: the path to the DataFrame
|
503 |
+
'''
|
504 |
+
def make_blank_schedule():
|
505 |
+
df = pd.DataFrame({
|
506 |
+
'Schedule': [],
|
507 |
+
'Instructors': []
|
508 |
+
})
|
509 |
+
|
510 |
+
directory = os.path.abspath(os.getcwd())
|
511 |
+
path = directory + "/schedule.csv"
|
512 |
+
df.to_csv(path, index=False)
|
513 |
+
return FORM_NOT_FOUND, df, path
|
514 |
+
|
515 |
+
|
516 |
+
'''
|
517 |
+
Gets a the form responses from Supabase and converts them to a DataFrame
|
518 |
+
Returns:
|
519 |
+
if found: a dictionary with three keys: capacity (int), df (DataFrame), and slots (list)
|
520 |
+
if not found: a string indicating the form was not found
|
521 |
+
'''
|
522 |
+
def get_df_from_db(schedule_name: str, password: str):
|
523 |
+
response = client.table('Forms').select('password', 'capacity', 'responses', 'slots').eq('form_name', standardize(schedule_name)).execute()
|
524 |
+
data = response.data
|
525 |
+
|
526 |
+
if len(data) > 0:
|
527 |
+
my_dict = data[0]
|
528 |
+
if password != my_dict['password']:
|
529 |
+
gr.Warning(INCORRECT_PASSWORD, ALERT_TIME)
|
530 |
+
return FORM_NOT_FOUND
|
531 |
+
|
532 |
+
# Convert to df
|
533 |
+
df = pd.DataFrame(json.loads(my_dict['responses']))
|
534 |
+
return {'capacity': my_dict['capacity'], 'df': df, 'slots': my_dict['slots']}
|
535 |
+
|
536 |
+
else:
|
537 |
+
gr.Warning(f"There is no form called \"{schedule_name}\". Please check the spelling and try again.", ALERT_TIME)
|
538 |
+
return FORM_NOT_FOUND
|
539 |
+
|
540 |
+
|
541 |
+
'''
|
542 |
+
Puts all of the form responses into a DataFrame.
|
543 |
+
Returns this DF along with the filepath.
|
544 |
+
'''
|
545 |
+
def get_all_responses(schedule_name:str, password:str):
|
546 |
+
res = get_df_from_db(schedule_name, password)
|
547 |
+
|
548 |
+
if res == FORM_NOT_FOUND:
|
549 |
+
df = pd.DataFrame({
|
550 |
+
NAME_COL: [],
|
551 |
+
EMAIL_COL: [],
|
552 |
+
NUM_WORKSHOPS_COL: [],
|
553 |
+
AVAIL_COL: [],
|
554 |
+
DESCRIP_COL: []
|
555 |
+
})
|
556 |
+
|
557 |
+
else:
|
558 |
+
df = res['df']
|
559 |
+
df[AVAIL_COL] = [elem.replace(DELIMITER, f"{DELIMITER} ") for elem in df[AVAIL_COL].to_list()]
|
560 |
+
|
561 |
+
directory = os.path.abspath(os.getcwd())
|
562 |
+
path = directory + "/all responses.csv"
|
563 |
+
df.to_csv(path, index=False)
|
564 |
+
|
565 |
+
if len(df) == 0:
|
566 |
+
gr.Warning('', ALERT_TIME, title='No one has filled out the form yet.')
|
567 |
+
return gr.DataFrame(df, visible=True), gr.File(path, visible=True)
|
568 |
+
|
569 |
+
|
570 |
+
'''
|
571 |
+
Calls the algorithm to generate the best possible schedules,
|
572 |
+
and returns a random subset of the results.
|
573 |
+
(The same as generate_schedules_wrapper_all_results, except that this function only returns a subset of them.
|
574 |
+
I had to make it into two separate functions in order to work with Gradio).
|
575 |
+
Returns:
|
576 |
+
DataFrame
|
577 |
+
Filepath to DF (str)
|
578 |
+
'''
|
579 |
+
def generate_schedules_wrapper_subset_results(schedule_name: str, password: str):
|
580 |
+
res = get_df_from_db(schedule_name, password)
|
581 |
+
# Return blank schedule (should be impossible to get to this condition btw)
|
582 |
+
if res == FORM_NOT_FOUND:
|
583 |
+
to_return = make_blank_schedule()
|
584 |
+
gr.Warning(FORM_NOT_FOUND, ALERT_TIME)
|
585 |
+
|
586 |
+
else:
|
587 |
+
df = res['df']
|
588 |
+
if len(df) == 0:
|
589 |
+
gr.Warning('', ALERT_TIME, title='No one has filled out the form yet.')
|
590 |
+
to_return = make_blank_schedule()
|
591 |
+
else:
|
592 |
+
gr.Info('', ALERT_TIME, title='Working on generating schedules! Please DO NOT click anything on this page.')
|
593 |
+
to_return = main(df, res['capacity'], NUM_RESULTS, res['slots'])
|
594 |
+
gr.Info('', ALERT_TIME, title=to_return[0])
|
595 |
+
|
596 |
+
|
597 |
+
return gr.Textbox(to_return[0]), gr.DataFrame(to_return[1], visible=True), gr.File(to_return[2], visible=True)
|
598 |
+
|
599 |
+
|
600 |
+
'''
|
601 |
+
Calls the algorithm to generate the best possible schedules,
|
602 |
+
and returns ALL of the results.
|
603 |
+
(The same as generate_schedules_wrapper_subset_results, except that this function returns all of them.
|
604 |
+
I had to make it into two separate functions in order to work with Gradio).
|
605 |
+
Returns:
|
606 |
+
DataFrame
|
607 |
+
Filepath to DF (str)
|
608 |
+
'''
|
609 |
+
def generate_schedules_wrapper_all_results(schedule_name: str, password: str):
|
610 |
+
res = get_df_from_db(schedule_name, password)
|
611 |
+
# Return blank schedule (should be impossible to get to this condition btw)
|
612 |
+
if res == FORM_NOT_FOUND:
|
613 |
+
to_return = make_blank_schedule()
|
614 |
+
gr.Warning(FORM_NOT_FOUND, ALERT_TIME)
|
615 |
+
|
616 |
+
else:
|
617 |
+
df = res['df']
|
618 |
+
if len(df) == 0:
|
619 |
+
gr.Warning('', ALERT_TIME, title='No one has filled out the form yet.')
|
620 |
+
to_return = make_blank_schedule()
|
621 |
+
else:
|
622 |
+
gr.Info('', ALERT_TIME, title='Working on generating schedules! Please DO NOT click anything on this page.')
|
623 |
+
placeholder = -1
|
624 |
+
to_return = main(df, res['capacity'], placeholder, res['slots'])
|
625 |
+
gr.Info('', ALERT_TIME, title=to_return[0])
|
626 |
+
|
627 |
+
return gr.Textbox(to_return[0]), gr.DataFrame(to_return[1], visible=True), gr.File(to_return[2], visible=True)
|
628 |
+
|
629 |
+
|
630 |
+
|
631 |
+
|
632 |
+
'''
|
633 |
+
Opens/closes a form and changes the button after opening/closing the form.
|
634 |
+
Returns: gr.Button
|
635 |
+
'''
|
636 |
+
def toggle_btn(schedule_name:str, password:str):
|
637 |
+
response = client.table('Forms').select('password', 'capacity', 'status').eq('form_name', standardize(schedule_name)).execute()
|
638 |
+
data = response.data
|
639 |
+
|
640 |
+
if len(data) > 0:
|
641 |
+
my_dict = data[0]
|
642 |
+
if password != my_dict['password']:
|
643 |
+
gr.Warning(INCORRECT_PASSWORD, ALERT_TIME)
|
644 |
+
return FORM_NOT_FOUND
|
645 |
+
|
646 |
+
curr_status = my_dict['status']
|
647 |
+
if curr_status == 'open':
|
648 |
+
client.table('Forms').update({'status': 'closed'}).eq('form_name', standardize(schedule_name)).execute()
|
649 |
+
gr.Info('', ALERT_TIME, title="The form was closed successfully!")
|
650 |
+
return gr.Button('Open Form')
|
651 |
+
|
652 |
+
elif curr_status == 'closed':
|
653 |
+
client.table('Forms').update({'status': 'open'}).eq('form_name', standardize(schedule_name)).execute()
|
654 |
+
gr.Info('', ALERT_TIME, title="The form was opened successfully!")
|
655 |
+
return gr.Button('Close Form')
|
656 |
+
|
657 |
+
else:
|
658 |
+
gr.Error('', ALERT_TIME, 'An unexpected error has ocurred.')
|
659 |
+
return gr.Button()
|
660 |
+
|
661 |
+
else:
|
662 |
+
gr.Warning('', ALERT_TIME, title=f"There was no form called \"{schedule_name}\". Please check the spelling and try again.")
|
663 |
+
return gr.Button()
|
664 |
+
|
665 |
+
|
666 |
+
|
667 |
+
|
668 |
+
### GRADIO ###
|
669 |
+
with gr.Blocks() as demo:
|
670 |
+
### VIEW FORM RESULTS ###
|
671 |
+
with gr.Tab('View Form Results'):
|
672 |
+
with gr.Column() as btn_group:
|
673 |
+
schedule_name = gr.Textbox(label="Form Name")
|
674 |
+
password = gr.Textbox(label="Password")
|
675 |
+
find_form_btn = gr.Button('Find Form', variant='primary')
|
676 |
+
|
677 |
+
# 1. Get all responses
|
678 |
+
with gr.Column(visible=False) as all_responses_col:
|
679 |
+
gr.Markdown('# Download All Form Responses')
|
680 |
+
gr.Markdown("Download everyone's responses to the form.")
|
681 |
+
all_responses_btn = gr.Button('Download All Form Responses', variant='primary')
|
682 |
+
|
683 |
+
with gr.Row() as all_responses_output_row:
|
684 |
+
df_out = gr.DataFrame(row_count = (NUM_ROWS, "dynamic"),col_count = (NUM_COLS_ALL_RESPONSES, "dynamic"),headers=[NAME_COL, NUM_WORKSHOPS_COL, AVAIL_COL, DESCRIP_COL],wrap=True,scale=4,visible=False)
|
685 |
+
file_out = gr.File(label = "Downloadable file", scale=1, visible=False)
|
686 |
+
|
687 |
+
all_responses_btn.click(fn=get_all_responses, inputs=[schedule_name, password], outputs=[df_out, file_out])
|
688 |
+
|
689 |
+
|
690 |
+
# 2. Generate schedules
|
691 |
+
with gr.Column(visible=False) as generate_schedules_explanation_col:
|
692 |
+
gr.Markdown('# Create Schedules based on Everyone\'s Preferences.')
|
693 |
+
|
694 |
+
with gr.Row(visible=False) as generate_btns_row:
|
695 |
+
generate_ten_results_btn = gr.Button('Generate a Subset of Schedules', variant='primary', visible=True)
|
696 |
+
generate_all_results_btn = gr.Button('Generate All Possible Schedules', visible=True)
|
697 |
+
|
698 |
+
with gr.Row(visible=True) as generated_schedules_output:
|
699 |
+
text_out = gr.Textbox(label='Results')
|
700 |
+
generated_df_out = gr.DataFrame(row_count = (NUM_ROWS, "dynamic"),col_count = (NUM_COLS_SCHEDULES, "dynamic"),headers=["Schedule", "Instructors"],wrap=True,scale=3, visible=False)
|
701 |
+
generated_file_out = gr.File(label = "Downloadable schedule file", scale=1, visible=False)
|
702 |
+
|
703 |
+
generate_ten_results_btn.click(fn=generate_schedules_wrapper_subset_results, inputs=[schedule_name, password], outputs=[text_out, generated_df_out, generated_file_out], api_name='generate_random_schedules')
|
704 |
+
generate_all_results_btn.click(fn=generate_schedules_wrapper_all_results, inputs=[schedule_name, password], outputs=[text_out, generated_df_out, generated_file_out], api_name='generate_all_schedules')
|
705 |
+
|
706 |
+
|
707 |
+
# 3. Open/close button
|
708 |
+
with gr.Column(visible=False) as open_close_btn_col:
|
709 |
+
gr.Markdown('# Open or Close Form')
|
710 |
+
open_close_btn = gr.Button(variant='primary')
|
711 |
+
open_close_btn.click(fn=toggle_btn, inputs=[schedule_name, password], outputs=[open_close_btn])
|
712 |
+
|
713 |
+
|
714 |
+
find_form_btn.click(fn=make_visible, inputs=[schedule_name, password], outputs=[find_form_btn, all_responses_col, generate_schedules_explanation_col, generate_btns_row, open_close_btn_col, open_close_btn])
|
715 |
+
|
716 |
+
|
717 |
+
|
718 |
+
|
719 |
+
directory = os.path.abspath(os.getcwd())
|
720 |
+
allowed = directory #+ "/schedules"
|
721 |
+
demo.launch(allowed_paths=[allowed], show_error=True)
|