Spaces:
Running
Running
Update index.html
Browse files- index.html +28 -40
index.html
CHANGED
@@ -1,57 +1,45 @@
|
|
1 |
-
<!DOCTYPE html>
|
2 |
<html>
|
3 |
<head>
|
4 |
-
<meta charset="utf-8">
|
5 |
-
<meta name="viewport" content="width=device-width, initial-scale=1">
|
6 |
-
<title>Gradio-Lite: Serverless Gradio Running Entirely in Your Browser</title>
|
7 |
-
<meta name="description" content="Gradio-Lite: Serverless Gradio Running Entirely in Your Browser">
|
8 |
-
|
9 |
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
|
10 |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
|
11 |
-
|
12 |
-
<style>
|
13 |
-
html, body {
|
14 |
-
margin: 0;
|
15 |
-
padding: 0;
|
16 |
-
height: 100%;
|
17 |
-
}
|
18 |
-
</style>
|
19 |
</head>
|
20 |
<body>
|
21 |
-
|
22 |
-
<gradio-file name="app.py" entrypoint>
|
23 |
-
import gradio as gr
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
output_image = as_gray(input_image)
|
29 |
-
return output_image
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
"
|
35 |
-
examples=["lion.jpg", "logo.png"],
|
36 |
)
|
37 |
|
38 |
-
demo.launch()
|
39 |
-
</gradio-file>
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
def as_gray(image):
|
45 |
-
return rgb2gray(image)
|
46 |
-
</gradio-file>
|
47 |
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
50 |
|
51 |
-
<gradio-requirements>
|
52 |
-
# Same syntax as requirements.txt
|
53 |
-
scikit-image
|
54 |
-
</gradio-requirements>
|
55 |
-
</gradio-lite>
|
56 |
</body>
|
57 |
</html>
|
|
|
|
|
1 |
<html>
|
2 |
<head>
|
|
|
|
|
|
|
|
|
|
|
3 |
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
|
4 |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
</head>
|
6 |
<body>
|
7 |
+
<gradio-lite>
|
|
|
|
|
8 |
|
9 |
+
<gradio-requirements>
|
10 |
+
transformers_js_py
|
11 |
+
</gradio-requirements>
|
12 |
+
|
13 |
+
<gradio-file name="app.py" entrypoint>
|
14 |
+
from transformers_js import pipeline
|
15 |
+
import gradio as gr
|
16 |
+
import numpy as np
|
17 |
|
18 |
+
speaker_embeddings = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin';
|
|
|
|
|
19 |
|
20 |
+
synthesizer = await pipeline(
|
21 |
+
'text-to-speech',
|
22 |
+
'Xenova/mms-tts-ara',
|
23 |
+
{ "quantized": False }
|
|
|
24 |
)
|
25 |
|
|
|
|
|
26 |
|
27 |
+
async def synthesize(text):
|
28 |
+
out = await synthesizer(text, { "speaker_embeddings": speaker_embeddings });
|
29 |
+
audio_data_memory_view = out["audio"]
|
30 |
+
sampling_rate = out["sampling_rate"]
|
31 |
+
|
32 |
+
audio_data = np.frombuffer(audio_data_memory_view, dtype=np.float32)
|
33 |
+
audio_data_16bit = (audio_data * 32767).astype(np.int16)
|
34 |
+
|
35 |
+
return sampling_rate, audio_data_16bit
|
36 |
|
|
|
|
|
|
|
37 |
|
38 |
+
demo = gr.Interface(synthesize, "textbox", "audio")
|
39 |
+
demo.launch()
|
40 |
+
</gradio-file>
|
41 |
+
|
42 |
+
</gradio-lite>
|
43 |
|
|
|
|
|
|
|
|
|
|
|
44 |
</body>
|
45 |
</html>
|