|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto&display=swap" > |
|
<style> |
|
body { |
|
font-family: 'Roboto', sans-serif; |
|
font-size: 16px; |
|
} |
|
.logo { |
|
height: 1em; |
|
vertical-align: middle; |
|
margin-bottom: 0.1em; |
|
} |
|
</style> |
|
|
|
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/[email protected]/dist/lite.js"></script> |
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/[email protected]/dist/lite.css" /> |
|
</head> |
|
<body> |
|
<h2> |
|
<img src="lite-logo.png" alt="logo" class="logo"> |
|
Gradio-lite (Gradio running entirely in your browser!) |
|
</h2> |
|
<p>Try it out! Once the Gradio app loads (can take 10-15 seconds), disconnect your Wifi and the machine learning model will still work!</p> |
|
<gradio-lite> |
|
|
|
<gradio-requirements> |
|
transformers_js_py |
|
</gradio-requirements> |
|
|
|
<gradio-file name="app.py" entrypoint> |
|
from transformers_js import import_transformers_js |
|
import gradio as gr |
|
|
|
transformers = await import_transformers_js() |
|
pipeline = transformers.pipeline |
|
pipe = await pipeline('sentiment-analysis') |
|
|
|
async def classify(text): |
|
return await pipe(text) |
|
|
|
demo = gr.Interface(classify, "textbox", "json", examples=["It's a happy day in the neighborhood", "I'm an evil penguin", "It wasn't a bad film."]) |
|
demo.launch() |
|
</gradio-file> |
|
|
|
</gradio-lite> |
|
</body> |
|
</html> |