Upload mean_iou.py
Browse files- mean_iou.py +314 -0
mean_iou.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Mean IoU (Intersection-over-Union) metric."""
|
15 |
+
|
16 |
+
from typing import Dict, Optional
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
import evaluate
|
22 |
+
|
23 |
+
|
24 |
+
_DESCRIPTION = """
|
25 |
+
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
|
26 |
+
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
|
27 |
+
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
|
28 |
+
"""
|
29 |
+
|
30 |
+
_KWARGS_DESCRIPTION = """
|
31 |
+
Args:
|
32 |
+
predictions (`List[ndarray]`):
|
33 |
+
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
|
34 |
+
references (`List[ndarray]`):
|
35 |
+
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
|
36 |
+
num_labels (`int`):
|
37 |
+
Number of classes (categories).
|
38 |
+
ignore_index (`int`):
|
39 |
+
Index that will be ignored during evaluation.
|
40 |
+
nan_to_num (`int`, *optional*):
|
41 |
+
If specified, NaN values will be replaced by the number defined by the user.
|
42 |
+
label_map (`dict`, *optional*):
|
43 |
+
If specified, dictionary mapping old label indices to new label indices.
|
44 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
45 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
46 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
`Dict[str, float | ndarray]` comprising various elements:
|
50 |
+
- *mean_iou* (`float`):
|
51 |
+
Mean Intersection-over-Union (IoU averaged over all categories).
|
52 |
+
- *mean_accuracy* (`float`):
|
53 |
+
Mean accuracy (averaged over all categories).
|
54 |
+
- *overall_accuracy* (`float`):
|
55 |
+
Overall accuracy on all images.
|
56 |
+
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
|
57 |
+
Per category accuracy.
|
58 |
+
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
|
59 |
+
Per category IoU.
|
60 |
+
|
61 |
+
Examples:
|
62 |
+
|
63 |
+
>>> import numpy as np
|
64 |
+
|
65 |
+
>>> mean_iou = evaluate.load("mean_iou")
|
66 |
+
|
67 |
+
>>> # suppose one has 3 different segmentation maps predicted
|
68 |
+
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
|
69 |
+
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
|
70 |
+
|
71 |
+
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
|
72 |
+
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
|
73 |
+
|
74 |
+
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
|
75 |
+
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
|
76 |
+
|
77 |
+
>>> predicted = [predicted_1, predicted_2, predicted_3]
|
78 |
+
>>> ground_truth = [actual_1, actual_2, actual_3]
|
79 |
+
|
80 |
+
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
|
81 |
+
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
|
82 |
+
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
|
83 |
+
"""
|
84 |
+
|
85 |
+
_CITATION = """\
|
86 |
+
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
|
87 |
+
author = {{MMSegmentation Contributors}},
|
88 |
+
license = {Apache-2.0},
|
89 |
+
month = {7},
|
90 |
+
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
|
91 |
+
url = {https://github.com/open-mmlab/mmsegmentation},
|
92 |
+
year = {2020}
|
93 |
+
}"""
|
94 |
+
|
95 |
+
|
96 |
+
def intersect_and_union(
|
97 |
+
pred_label,
|
98 |
+
label,
|
99 |
+
num_labels,
|
100 |
+
ignore_index: bool,
|
101 |
+
label_map: Optional[Dict[int, int]] = None,
|
102 |
+
reduce_labels: bool = False,
|
103 |
+
):
|
104 |
+
"""Calculate intersection and Union.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
pred_label (`ndarray`):
|
108 |
+
Prediction segmentation map of shape (height, width).
|
109 |
+
label (`ndarray`):
|
110 |
+
Ground truth segmentation map of shape (height, width).
|
111 |
+
num_labels (`int`):
|
112 |
+
Number of categories.
|
113 |
+
ignore_index (`int`):
|
114 |
+
Index that will be ignored during evaluation.
|
115 |
+
label_map (`dict`, *optional*):
|
116 |
+
Mapping old labels to new labels. The parameter will work only when label is str.
|
117 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
118 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
119 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
area_intersect (`ndarray`):
|
123 |
+
The intersection of prediction and ground truth histogram on all classes.
|
124 |
+
area_union (`ndarray`):
|
125 |
+
The union of prediction and ground truth histogram on all classes.
|
126 |
+
area_pred_label (`ndarray`):
|
127 |
+
The prediction histogram on all classes.
|
128 |
+
area_label (`ndarray`):
|
129 |
+
The ground truth histogram on all classes.
|
130 |
+
"""
|
131 |
+
if label_map is not None:
|
132 |
+
for old_id, new_id in label_map.items():
|
133 |
+
label[label == old_id] = new_id
|
134 |
+
|
135 |
+
# turn into Numpy arrays
|
136 |
+
pred_label = np.array(pred_label)
|
137 |
+
label = np.array(label)
|
138 |
+
|
139 |
+
if reduce_labels:
|
140 |
+
label[label == 0] = 255
|
141 |
+
label = label - 1
|
142 |
+
label[label == 254] = 255
|
143 |
+
|
144 |
+
mask = label != ignore_index
|
145 |
+
mask = np.not_equal(label, ignore_index)
|
146 |
+
pred_label = pred_label[mask]
|
147 |
+
label = np.array(label)[mask]
|
148 |
+
|
149 |
+
intersect = pred_label[pred_label == label]
|
150 |
+
|
151 |
+
area_intersect = np.histogram(intersect, bins=num_labels, range=(0, num_labels - 1))[0]
|
152 |
+
area_pred_label = np.histogram(pred_label, bins=num_labels, range=(0, num_labels - 1))[0]
|
153 |
+
area_label = np.histogram(label, bins=num_labels, range=(0, num_labels - 1))[0]
|
154 |
+
|
155 |
+
area_union = area_pred_label + area_label - area_intersect
|
156 |
+
|
157 |
+
return area_intersect, area_union, area_pred_label, area_label
|
158 |
+
|
159 |
+
|
160 |
+
def total_intersect_and_union(
|
161 |
+
results,
|
162 |
+
gt_seg_maps,
|
163 |
+
num_labels,
|
164 |
+
ignore_index: bool,
|
165 |
+
label_map: Optional[Dict[int, int]] = None,
|
166 |
+
reduce_labels: bool = False,
|
167 |
+
):
|
168 |
+
"""Calculate Total Intersection and Union, by calculating `intersect_and_union` for each (predicted, ground truth) pair.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
results (`ndarray`):
|
172 |
+
List of prediction segmentation maps, each of shape (height, width).
|
173 |
+
gt_seg_maps (`ndarray`):
|
174 |
+
List of ground truth segmentation maps, each of shape (height, width).
|
175 |
+
num_labels (`int`):
|
176 |
+
Number of categories.
|
177 |
+
ignore_index (`int`):
|
178 |
+
Index that will be ignored during evaluation.
|
179 |
+
label_map (`dict`, *optional*):
|
180 |
+
Mapping old labels to new labels. The parameter will work only when label is str.
|
181 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
182 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
183 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
184 |
+
|
185 |
+
Returns:
|
186 |
+
total_area_intersect (`ndarray`):
|
187 |
+
The intersection of prediction and ground truth histogram on all classes.
|
188 |
+
total_area_union (`ndarray`):
|
189 |
+
The union of prediction and ground truth histogram on all classes.
|
190 |
+
total_area_pred_label (`ndarray`):
|
191 |
+
The prediction histogram on all classes.
|
192 |
+
total_area_label (`ndarray`):
|
193 |
+
The ground truth histogram on all classes.
|
194 |
+
"""
|
195 |
+
total_area_intersect = np.zeros((num_labels,), dtype=np.float64)
|
196 |
+
total_area_union = np.zeros((num_labels,), dtype=np.float64)
|
197 |
+
total_area_pred_label = np.zeros((num_labels,), dtype=np.float64)
|
198 |
+
total_area_label = np.zeros((num_labels,), dtype=np.float64)
|
199 |
+
for result, gt_seg_map in zip(results, gt_seg_maps):
|
200 |
+
area_intersect, area_union, area_pred_label, area_label = intersect_and_union(
|
201 |
+
result, gt_seg_map, num_labels, ignore_index, label_map, reduce_labels
|
202 |
+
)
|
203 |
+
total_area_intersect += area_intersect
|
204 |
+
total_area_union += area_union
|
205 |
+
total_area_pred_label += area_pred_label
|
206 |
+
total_area_label += area_label
|
207 |
+
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
|
208 |
+
|
209 |
+
|
210 |
+
def mean_iou(
|
211 |
+
results,
|
212 |
+
gt_seg_maps,
|
213 |
+
num_labels,
|
214 |
+
ignore_index: bool,
|
215 |
+
nan_to_num: Optional[int] = None,
|
216 |
+
label_map: Optional[Dict[int, int]] = None,
|
217 |
+
reduce_labels: bool = False,
|
218 |
+
):
|
219 |
+
"""Calculate Mean Intersection and Union (mIoU).
|
220 |
+
|
221 |
+
Args:
|
222 |
+
results (`ndarray`):
|
223 |
+
List of prediction segmentation maps, each of shape (height, width).
|
224 |
+
gt_seg_maps (`ndarray`):
|
225 |
+
List of ground truth segmentation maps, each of shape (height, width).
|
226 |
+
num_labels (`int`):
|
227 |
+
Number of categories.
|
228 |
+
ignore_index (`int`):
|
229 |
+
Index that will be ignored during evaluation.
|
230 |
+
nan_to_num (`int`, *optional*):
|
231 |
+
If specified, NaN values will be replaced by the number defined by the user.
|
232 |
+
label_map (`dict`, *optional*):
|
233 |
+
Mapping old labels to new labels. The parameter will work only when label is str.
|
234 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
235 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
236 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
`Dict[str, float | ndarray]` comprising various elements:
|
240 |
+
- *mean_iou* (`float`):
|
241 |
+
Mean Intersection-over-Union (IoU averaged over all categories).
|
242 |
+
- *mean_accuracy* (`float`):
|
243 |
+
Mean accuracy (averaged over all categories).
|
244 |
+
- *overall_accuracy* (`float`):
|
245 |
+
Overall accuracy on all images.
|
246 |
+
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
|
247 |
+
Per category accuracy.
|
248 |
+
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
|
249 |
+
Per category IoU.
|
250 |
+
"""
|
251 |
+
total_area_intersect, total_area_union, total_area_pred_label, total_area_label = total_intersect_and_union(
|
252 |
+
results, gt_seg_maps, num_labels, ignore_index, label_map, reduce_labels
|
253 |
+
)
|
254 |
+
|
255 |
+
# compute metrics
|
256 |
+
metrics = dict()
|
257 |
+
|
258 |
+
all_acc = total_area_intersect.sum() / total_area_label.sum()
|
259 |
+
iou = total_area_intersect / total_area_union
|
260 |
+
acc = total_area_intersect / total_area_label
|
261 |
+
|
262 |
+
metrics["mean_iou"] = np.nanmean(iou)
|
263 |
+
metrics["mean_accuracy"] = np.nanmean(acc)
|
264 |
+
metrics["overall_accuracy"] = all_acc
|
265 |
+
metrics["per_category_iou"] = iou
|
266 |
+
metrics["per_category_accuracy"] = acc
|
267 |
+
|
268 |
+
if nan_to_num is not None:
|
269 |
+
metrics = dict(
|
270 |
+
{metric: np.nan_to_num(metric_value, nan=nan_to_num) for metric, metric_value in metrics.items()}
|
271 |
+
)
|
272 |
+
|
273 |
+
return metrics
|
274 |
+
|
275 |
+
|
276 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
277 |
+
class MeanIoU(evaluate.Metric):
|
278 |
+
def _info(self):
|
279 |
+
return evaluate.MetricInfo(
|
280 |
+
description=_DESCRIPTION,
|
281 |
+
citation=_CITATION,
|
282 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
283 |
+
features=datasets.Features(
|
284 |
+
# 1st Seq - height dim, 2nd - width dim
|
285 |
+
{
|
286 |
+
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))),
|
287 |
+
"references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))),
|
288 |
+
}
|
289 |
+
),
|
290 |
+
reference_urls=[
|
291 |
+
"https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"
|
292 |
+
],
|
293 |
+
)
|
294 |
+
|
295 |
+
def _compute(
|
296 |
+
self,
|
297 |
+
predictions,
|
298 |
+
references,
|
299 |
+
num_labels: int,
|
300 |
+
ignore_index: bool,
|
301 |
+
nan_to_num: Optional[int] = None,
|
302 |
+
label_map: Optional[Dict[int, int]] = None,
|
303 |
+
reduce_labels: bool = False,
|
304 |
+
):
|
305 |
+
iou_result = mean_iou(
|
306 |
+
results=predictions,
|
307 |
+
gt_seg_maps=references,
|
308 |
+
num_labels=num_labels,
|
309 |
+
ignore_index=ignore_index,
|
310 |
+
nan_to_num=nan_to_num,
|
311 |
+
label_map=label_map,
|
312 |
+
reduce_labels=reduce_labels,
|
313 |
+
)
|
314 |
+
return iou_result
|