import sklearn import gradio as gr import joblib import pandas as pd pipe = joblib.load("./model.pkl") title = "Supersoaker Defective Product Prediction" description = "This model predicts Supersoaker production line failures. The examples as of now are not parsed correctly, soon to be fixed. " with open("./config.json") as f: config_dict = eval(f.read()) headers = config_dict["sklearn"]["columns"] example_dict = config_dict["sklearn"]["example_input"] df = pd.DataFrame.from_dict(example_dict,orient='index').transpose() examples=df.to_numpy().tolist() final_examples = [[[example]] for example in examples] inputs = gr.Dataframe(headers = [item for item in example_dict]) outputs = gr.Dataframe(headers = ["results"]) def infer(inputs): data = pd.DataFrame(inputs, columns=[item for item in example_dict]) predictions = pipe.predict(inputs) return pd.DataFrame(predictions, columns=["results"]) gr.Interface(infer, inputs = inputs, outputs = outputs, title = title, description = description, examples=final_examples).launch(debug=True)