import gradio as gr import os import openai import gradio as gr from gradio import ChatInterface import time # Get the value of the openai_api_key from environment variable openai.api_key = os.getenv("OPENAI_API_KEY") # Import things that are needed generically from langchain from langchain import LLMMathChain, SerpAPIWrapper from langchain.agents import AgentType, initialize_agent, load_tools from langchain.chat_models import ChatOpenAI from langchain.tools import BaseTool, StructuredTool, Tool, tool from langchain.tools import MoveFileTool, format_tool_to_openai_function from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) from langchain.utilities import WikipediaAPIWrapper from langchain.tools import AIPluginTool def predict_langchain(user_input, chatbot): print(f"Chatbot : {chatbot}") chat = ChatOpenAI(temperature=1.0, streaming=True, model='gpt-3.5-turbo-0613') messages=[] for conv in chatbot: human = HumanMessage(content=conv[0]) ai = AIMessage(content=conv[1]) messages.append(human) messages.append(ai) messages.append(HumanMessage(content=user_input)) # getting gpt3.5's response gpt_response = chat(messages) return gpt_response.content gr.ChatInterface(predict_langchain, delete_last_btn="del").queue().launch(share=False, debug=True)