File size: 820 Bytes
885747d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import torch
import numpy as np
import gradio as gr

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622775")
model = AutoModelForSequenceClassification.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622775")

def predict(review):
    inputs = tokenizer(review, padding=True, truncation=True, return_tensors="pt")
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predictions = predictions.detach().numpy()[0]
    index = np.argmax(predictions)
    score = predictions[index]
    return "This revied os {:.3f}% {}".format(100*score, "negative" if index == 0 else "positive")

iface = gr.Interface(fn=predict, inputs='text', outputs='text')
iface.launch()