Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
|
5 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
-
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622775")
|
8 |
-
model = AutoModelForSequenceClassification.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622775")
|
9 |
-
|
10 |
-
def predict(review):
|
11 |
-
inputs = tokenizer(review, padding=True, truncation=True, return_tensors="pt")
|
12 |
-
outputs = model(**inputs)
|
13 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
14 |
-
predictions = predictions.detach().numpy()[0]
|
15 |
-
index = np.argmax(predictions)
|
16 |
-
score = predictions[index]
|
17 |
-
return "This revied os {:.3f}% {}".format(100*score, "negative" if index == 0 else "positive")
|
18 |
|
19 |
iface = gr.Interface(fn=predict, inputs='text', outputs='text')
|
20 |
iface.launch()
|
|
|
1 |
+
def predict(x):
|
2 |
+
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
iface = gr.Interface(fn=predict, inputs='text', outputs='text')
|
5 |
iface.launch()
|