Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,67 +1 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
-
import sklearn
|
6 |
-
import gradio as gr
|
7 |
-
from sklearn import preprocessing
|
8 |
-
from sklearn.model_selection import train_test_split
|
9 |
-
from sklearn.ensemble import RandomForestClassifier
|
10 |
-
from sklearn.metrics import accuracy_score
|
11 |
-
|
12 |
-
data = pd.read_csv('https://raw.githubusercontent.com/gradio-app/titanic/master/train.csv')
|
13 |
-
data.head()
|
14 |
-
|
15 |
-
def encode_ages(df): # Binning ages
|
16 |
-
df.Age = df.Age.fillna(-0.5)
|
17 |
-
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
|
18 |
-
categories = pd.cut(df.Age, bins, labels=False)
|
19 |
-
df.Age = categories
|
20 |
-
return df
|
21 |
-
|
22 |
-
def encode_fares(df): # Binning fares
|
23 |
-
df.Fare = df.Fare.fillna(-0.5)
|
24 |
-
bins = (-1, 0, 8, 15, 31, 1000)
|
25 |
-
categories = pd.cut(df.Fare, bins, labels=False)
|
26 |
-
df.Fare = categories
|
27 |
-
return df
|
28 |
-
|
29 |
-
def encode_sex(df):
|
30 |
-
mapping = {"male": 0, "female": 1}
|
31 |
-
return df.replace({'Sex': mapping})
|
32 |
-
|
33 |
-
def transform_features(df):
|
34 |
-
df = encode_ages(df)
|
35 |
-
df = encode_fares(df)
|
36 |
-
df = encode_sex(df)
|
37 |
-
return df
|
38 |
-
|
39 |
-
train = data[['PassengerId', 'Fare', 'Age', 'Sex', 'Survived']]
|
40 |
-
train = transform_features(train)
|
41 |
-
train.head()
|
42 |
-
|
43 |
-
|
44 |
-
X_all = train.drop(['Survived', 'PassengerId'], axis=1)
|
45 |
-
y_all = train['Survived']
|
46 |
-
|
47 |
-
num_test = 0.20
|
48 |
-
X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, random_state=23)
|
49 |
-
|
50 |
-
clf = RandomForestClassifier()
|
51 |
-
clf.fit(X_train, y_train)
|
52 |
-
predictions = clf.predict(X_test)
|
53 |
-
|
54 |
-
def predict_survival(sex, age, fare):
|
55 |
-
df = pd.DataFrame.from_dict({'Sex': [sex], 'Age': [age], 'Fare': [fare]})
|
56 |
-
df = encode_sex(df)
|
57 |
-
df = encode_fares(df)
|
58 |
-
df = encode_ages(df)
|
59 |
-
pred = clf.predict_proba(df)[0]
|
60 |
-
return {'Perishes': float(pred[0]), 'Survives': float(pred[1])}
|
61 |
-
|
62 |
-
sex = gr.inputs.Radio(['female', 'male'], label="Sex")
|
63 |
-
age = gr.inputs.Slider(minimum=0, maximum=120, default=22, label="Age")
|
64 |
-
fare = gr.inputs.Slider(minimum=0, maximum=200, default=100, label="Fare (british pounds)")
|
65 |
-
|
66 |
-
gr.Interface(predict_survival, [sex, age, fare], "label", live=True, thumbnail="https://raw.githubusercontent.com/gradio-app/hub-titanic/master/thumbnail.png", analytics_enabled=False,
|
67 |
-
title="Surviving the Titanic", description="What is the probability that a passenger on the Titanic would survive the famous wreck? It depends on their demographics as this live interface demonstrates.").launch();
|
|
|
1 |
+
1/0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|