abidlabs HF Staff commited on
Commit
601407d
·
0 Parent(s):

Duplicate from gradio-tests/titanic-survival

Browse files
Files changed (4) hide show
  1. .gitattributes +16 -0
  2. README.md +35 -0
  3. app.py +67 -0
  4. requirements.txt +3 -0
.gitattributes ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.arrow filter=lfs diff=lfs merge=lfs -text
10
+ *.ftz filter=lfs diff=lfs merge=lfs -text
11
+ *.joblib filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.pb filter=lfs diff=lfs merge=lfs -text
15
+ *.pt filter=lfs diff=lfs merge=lfs -text
16
+ *.pth filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Titanic Survival in Real Time
3
+ emoji: 🚀
4
+ colorFrom: blue
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 3.23.1b1
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: gradio-tests/titanic-survival
11
+ ---
12
+
13
+ # Configuration
14
+
15
+ `title`: _string_
16
+ Display title for the Space
17
+
18
+ `emoji`: _string_
19
+ Space emoji (emoji-only character allowed)
20
+
21
+ `colorFrom`: _string_
22
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
23
+
24
+ `colorTo`: _string_
25
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
26
+
27
+ `sdk`: _string_
28
+ Can be either `gradio` or `streamlit`
29
+
30
+ `app_file`: _string_
31
+ Path to your main application file (which contains either `gradio` or `streamlit` Python code).
32
+ Path is relative to the root of the repository.
33
+
34
+ `pinned`: _boolean_
35
+ Whether the Space stays on top of your list.
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is a small and fast sklearn model, so the run-gradio script trains a model and deploys it
2
+
3
+ import pandas as pd
4
+ import numpy as np
5
+ import sklearn
6
+ import gradio as gr
7
+ from sklearn import preprocessing
8
+ from sklearn.model_selection import train_test_split
9
+ from sklearn.ensemble import RandomForestClassifier
10
+ from sklearn.metrics import accuracy_score
11
+
12
+ data = pd.read_csv('https://raw.githubusercontent.com/gradio-app/titanic/master/train.csv')
13
+ data.head()
14
+
15
+ def encode_ages(df): # Binning ages
16
+ df.Age = df.Age.fillna(-0.5)
17
+ bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
18
+ categories = pd.cut(df.Age, bins, labels=False)
19
+ df.Age = categories
20
+ return df
21
+
22
+ def encode_fares(df): # Binning fares
23
+ df.Fare = df.Fare.fillna(-0.5)
24
+ bins = (-1, 0, 8, 15, 31, 1000)
25
+ categories = pd.cut(df.Fare, bins, labels=False)
26
+ df.Fare = categories
27
+ return df
28
+
29
+ def encode_sex(df):
30
+ mapping = {"male": 0, "female": 1}
31
+ return df.replace({'Sex': mapping})
32
+
33
+ def transform_features(df):
34
+ df = encode_ages(df)
35
+ df = encode_fares(df)
36
+ df = encode_sex(df)
37
+ return df
38
+
39
+ train = data[['PassengerId', 'Fare', 'Age', 'Sex', 'Survived']]
40
+ train = transform_features(train)
41
+ train.head()
42
+
43
+
44
+ X_all = train.drop(['Survived', 'PassengerId'], axis=1)
45
+ y_all = train['Survived']
46
+
47
+ num_test = 0.20
48
+ X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, random_state=23)
49
+
50
+ clf = RandomForestClassifier()
51
+ clf.fit(X_train, y_train)
52
+ predictions = clf.predict(X_test)
53
+
54
+ def predict_survival(sex, age, fare):
55
+ df = pd.DataFrame.from_dict({'Sex': [sex], 'Age': [age], 'Fare': [fare]})
56
+ df = encode_sex(df)
57
+ df = encode_fares(df)
58
+ df = encode_ages(df)
59
+ pred = clf.predict_proba(df)[0]
60
+ return {'Perishes': float(pred[0]), 'Survives': float(pred[1])}
61
+
62
+ sex = gr.Radio(['female', 'male'], label="Sex", value="male")
63
+ age = gr.Slider(minimum=0, maximum=120, default=22, label="Age")
64
+ fare = gr.Slider(minimum=0, maximum=200, default=100, label="Fare (british pounds)")
65
+
66
+ gr.Interface(predict_survival, [sex, age, fare], "label", live=True, thumbnail="https://raw.githubusercontent.com/gradio-app/hub-titanic/master/thumbnail.png", analytics_enabled=False,
67
+ theme="soft", title="Surviving the Titanic", description="What is the probability that a passenger on the Titanic would survive the famous wreck? It depends on their demographics as this live interface demonstrates.").launch();
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pandas
2
+ numpy
3
+ scikit-learn==1.0.2