|
|
|
from huggingface_hub import login |
|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
huggingface-cli login |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model_repo_id = "black-forest-labs/FLUX.1-dev" |
|
lora_repo_id = "abmSS/Amer" |
|
|
|
if torch.cuda.is_available(): |
|
torch_dtype = torch.float16 |
|
else: |
|
torch_dtype = torch.float32 |
|
|
|
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) |
|
pipe.to(device) |
|
|
|
pipe.load_lora_weights(lora_repo_id) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
pipe.fuse_lora() |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.Markdown(" # Text-to-Image with LoRA Support") |
|
|
|
prompt = gr.Text(label="Prompt", placeholder="Enter your prompt") |
|
run_button = gr.Button("Run") |
|
|
|
result = gr.Image(label="Result") |
|
|
|
gr.Examples( |
|
examples=["Astronaut in a jungle", "A futuristic city"], |
|
inputs=[prompt], |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[prompt, "", 0, True, 1024, 1024, 7.5, 25], |
|
outputs=[result, None], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|