abmSS commited on
Commit
f26f26c
·
verified ·
1 Parent(s): 7e617ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -112
app.py CHANGED
@@ -1,13 +1,12 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
 
11
 
12
  if torch.cuda.is_available():
13
  torch_dtype = torch.float16
@@ -15,29 +14,21 @@ else:
15
  torch_dtype = torch.float32
16
 
17
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
 
 
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
 
39
  generator = torch.Generator().manual_seed(seed)
40
 
 
 
41
  image = pipe(
42
  prompt=prompt,
43
  negative_prompt=negative_prompt,
@@ -50,104 +41,25 @@ def infer(
50
 
51
  return image, seed
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
  gr.on(
138
  triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
  if __name__ == "__main__":
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
 
 
4
  import torch
5
+ from diffusers import DiffusionPipeline
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
+ model_repo_id = "black-forest-labs/FLUX.1-dev"
9
+ lora_repo_id = "abmSS/Amer" # Replace with your LoRA model
10
 
11
  if torch.cuda.is_available():
12
  torch_dtype = torch.float16
 
14
  torch_dtype = torch.float32
15
 
16
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
+ pipe.to(device)
18
+
19
+ pipe.load_lora_weights(lora_repo_id) # Load LoRA weights
20
 
21
  MAX_SEED = np.iinfo(np.int32).max
22
  MAX_IMAGE_SIZE = 1024
23
 
24
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
 
 
 
 
 
 
 
 
 
 
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
 
28
  generator = torch.Generator().manual_seed(seed)
29
 
30
+ pipe.fuse_lora() # Enable LoRA
31
+
32
  image = pipe(
33
  prompt=prompt,
34
  negative_prompt=negative_prompt,
 
41
 
42
  return image, seed
43
 
44
+ with gr.Blocks() as demo:
45
+ with gr.Column():
46
+ gr.Markdown(" # Text-to-Image with LoRA Support")
47
+
48
+ prompt = gr.Text(label="Prompt", placeholder="Enter your prompt")
49
+ run_button = gr.Button("Run")
50
+
51
+ result = gr.Image(label="Result")
52
+
53
+ gr.Examples(
54
+ examples=["Astronaut in a jungle", "A futuristic city"],
55
+ inputs=[prompt],
56
+ )
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  gr.on(
59
  triggers=[run_button.click, prompt.submit],
60
  fn=infer,
61
+ inputs=[prompt, "", 0, True, 1024, 1024, 7.5, 25],
62
+ outputs=[result, None],
 
 
 
 
 
 
 
 
 
63
  )
64
 
65
  if __name__ == "__main__":