from huggingface_hub import login import gradio as gr import numpy as np import random import torch from diffusers import DiffusionPipeline huggingface-cli login device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "black-forest-labs/FLUX.1-dev" lora_repo_id = "abmSS/Amer" # Replace with your LoRA model if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe.to(device) pipe.load_lora_weights(lora_repo_id) # Load LoRA weights MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) pipe.fuse_lora() # Enable LoRA image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed with gr.Blocks() as demo: with gr.Column(): gr.Markdown(" # Text-to-Image with LoRA Support") prompt = gr.Text(label="Prompt", placeholder="Enter your prompt") run_button = gr.Button("Run") result = gr.Image(label="Result") gr.Examples( examples=["Astronaut in a jungle", "A futuristic city"], inputs=[prompt], ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, "", 0, True, 1024, 1024, 7.5, 25], outputs=[result, None], ) if __name__ == "__main__": demo.launch()