File size: 1,193 Bytes
03af31e
 
 
 
 
 
 
 
f8f9105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03af31e
 
9a80d11
03af31e
 
 
 
 
 
 
 
09a17ed
 
 
 
03af31e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from fastai.vision.all import *
import gradio as gr

# import pathlib
# temp = pathlib.PosixPath
# pathlib.PosixPath = pathlib.WindowsPath

vehicle_labels = (
    'ATV',
    'Airplane',
    'Ambulance',
    'Armored Tank',
    'Autorickshaw',
    'Bicycle',
    'Boat',
    'Buggy',
    'Bulldozer',
    'Cargo Ship',
    'Cargo Truck',
    'Crane',
    'Excavator',
    'Ferry',
    'Helicopter',
    'Hot Air Baloon',
    'Microbus',
    'Monster Truck',
    'Motorcycle',
    'Multi Purpose Vehicle',
    'Ocean Liner',
    'Police Car',
    'Private Car',
    'Rickshaw',
    'SUV',
    'Sail Boat',
    'Semi Truck',
    'Sports Car',
    'Steam Roller',
    'Train',
    'Transport Bus',
    'Truck',
    'Yacht'
)

model = load_learner('vehicle-recognizer-v2.pkl')

def recognize_image(image):
    pred, idx, probs = model.predict(image)
    return dict(zip(vehicle_labels, map(float, probs)))

image = gr.inputs.Image(shape=(192,192))
label = gr.outputs.Label(num_top_classes=5)
examples = [
    'image1.jpg',
    'image2.jpg',
    'image3.jpg',
    'image4.jpg'
    ]

iface = gr.Interface(fn=recognize_image, inputs=image, outputs=label, examples=examples)
iface.launch(inline=False)