File size: 9,681 Bytes
d82cf6a
 
 
424ca7b
d82cf6a
 
b35739a
d82cf6a
 
 
 
b35739a
 
 
d82cf6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffd7ac5
d82cf6a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import sys
import os
import OpenGL.GL as gl

os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
os.system('pip install /home/user/app/pyrender')

sys.argv = ['VQTrans/GPT_eval_multi.py']
os.chdir('VQTrans')

sys.path.append('/home/user/app/VQTrans')
sys.path.append('/home/user/app/pyrender')
sys.path.append('/home/user/app/VQTrans/models')

import options.option_transformer as option_trans
from huggingface_hub import snapshot_download
model_path = snapshot_download(repo_id="vumichien/T2M-GPT")

args = option_trans.get_args_parser()

args.dataname = 't2m'
args.resume_pth = f'{model_path}/VQVAE/net_last.pth'
args.resume_trans = f'{model_path}/VQTransformer_corruption05/net_best_fid.pth'
args.down_t = 2
args.depth = 3
args.block_size = 51

import clip
import torch
import numpy as np
#import models.vqvae as vqvae
import VQTrans.models.vqvae as vqvae
import VQTrans.models.t2m_trans as trans
from VQTrans.utils.motion_process import recover_from_ric
import VQTrans.visualization.plot_3d_global as plot_3d
from VQTrans.models.rotation2xyz import Rotation2xyz
import numpy as np
from trimesh import Trimesh
import gc

import torch
from visualize.simplify_loc2rot import joints2smpl
import pyrender
# import matplotlib.pyplot as plt

import io
import imageio
from shapely import geometry
import trimesh
from pyrender.constants import RenderFlags
import math
# import ffmpeg
# from PIL import Image
import hashlib
import gradio as gr
import moviepy.editor as mp

## load clip model and datasets
is_cuda = torch.cuda.is_available()
device = torch.device("cuda" if is_cuda else "cpu")
print(device)
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device, jit=False, download_root='./')  # Must set jit=False for training

if is_cuda:
    clip.model.convert_weights(clip_model)
    
clip_model.eval()
for p in clip_model.parameters():
    p.requires_grad = False

net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
                       args.nb_code,
                       args.code_dim,
                       args.output_emb_width,
                       args.down_t,
                       args.stride_t,
                       args.width,
                       args.depth,
                       args.dilation_growth_rate)


trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code, 
                                embed_dim=1024, 
                                clip_dim=args.clip_dim, 
                                block_size=args.block_size, 
                                num_layers=9, 
                                n_head=16, 
                                drop_out_rate=args.drop_out_rate, 
                                fc_rate=args.ff_rate)


print('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.eval()
    
print('loading transformer checkpoint from {}'.format(args.resume_trans))
ckpt = torch.load(args.resume_trans, map_location='cpu')
trans_encoder.load_state_dict(ckpt['trans'], strict=True)
trans_encoder.eval()

mean = torch.from_numpy(np.load(f'{model_path}/meta/mean.npy'))
std = torch.from_numpy(np.load(f'{model_path}/meta/std.npy'))

if is_cuda:
    net.cuda()
    trans_encoder.cuda()
    mean = mean.cuda()
    std = std.cuda()

def render(motions, device_id=0, name='test_vis'):
    frames, njoints, nfeats = motions.shape
    MINS = motions.min(axis=0).min(axis=0)
    MAXS = motions.max(axis=0).max(axis=0)

    height_offset = MINS[1]
    motions[:, :, 1] -= height_offset
    trajec = motions[:, 0, [0, 2]]
    is_cuda = torch.cuda.is_available()
    # device = torch.device("cuda" if is_cuda else "cpu")
    j2s = joints2smpl(num_frames=frames, device_id=0, cuda=is_cuda)
    rot2xyz = Rotation2xyz(device=device)
    faces = rot2xyz.smpl_model.faces

    if not os.path.exists(f'output/{name}_pred.pt'): 
        print(f'Running SMPLify, it may take a few minutes.')
        motion_tensor, opt_dict = j2s.joint2smpl(motions)  # [nframes, njoints, 3]

        vertices = rot2xyz(torch.tensor(motion_tensor).clone(), mask=None,
                                        pose_rep='rot6d', translation=True, glob=True,
                                        jointstype='vertices',
                                        vertstrans=True)
        vertices = vertices.detach().cpu()
        torch.save(vertices, f'output/{name}_pred.pt')
    else:
        vertices = torch.load(f'output/{name}_pred.pt')
    frames = vertices.shape[3] # shape: 1, nb_frames, 3, nb_joints
    print(vertices.shape)
    MINS = torch.min(torch.min(vertices[0], axis=0)[0], axis=1)[0]
    MAXS = torch.max(torch.max(vertices[0], axis=0)[0], axis=1)[0]

    out_list = []
    
    minx = MINS[0] - 0.5
    maxx = MAXS[0] + 0.5
    minz = MINS[2] - 0.5 
    maxz = MAXS[2] + 0.5
    polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]])
    polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5)

    vid = []
    for i in range(frames):
        if i % 10 == 0:
            print(i)

        mesh = Trimesh(vertices=vertices[0, :, :, i].squeeze().tolist(), faces=faces)

        base_color = (0.11, 0.53, 0.8, 0.5)
        ## OPAQUE rendering without alpha
        ## BLEND rendering consider alpha 
        material = pyrender.MetallicRoughnessMaterial(
            metallicFactor=0.7,
            alphaMode='OPAQUE',
            baseColorFactor=base_color
        )


        mesh = pyrender.Mesh.from_trimesh(mesh, material=material)

        polygon_mesh.visual.face_colors = [0, 0, 0, 0.21]
        polygon_render = pyrender.Mesh.from_trimesh(polygon_mesh, smooth=False)

        bg_color = [1, 1, 1, 0.8]
        scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4))
        
        sx, sy, tx, ty = [0.75, 0.75, 0, 0.10]

        camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0))

        light = pyrender.DirectionalLight(color=[1,1,1], intensity=300)

        scene.add(mesh)

        c = np.pi / 2

        scene.add(polygon_render, pose=np.array([[ 1, 0, 0, 0],

        [ 0, np.cos(c), -np.sin(c), MINS[1].cpu().numpy()],

        [ 0, np.sin(c), np.cos(c), 0],

        [ 0, 0, 0, 1]]))

        light_pose = np.eye(4)
        light_pose[:3, 3] = [0, -1, 1]
        scene.add(light, pose=light_pose.copy())

        light_pose[:3, 3] = [0, 1, 1]
        scene.add(light, pose=light_pose.copy())

        light_pose[:3, 3] = [1, 1, 2]
        scene.add(light, pose=light_pose.copy())


        c = -np.pi / 6

        scene.add(camera, pose=[[ 1, 0, 0, (minx+maxx).cpu().numpy()/2],

                                [ 0, np.cos(c), -np.sin(c), 1.5],

                                [ 0, np.sin(c), np.cos(c), max(4, minz.cpu().numpy()+(1.5-MINS[1].cpu().numpy())*2, (maxx-minx).cpu().numpy())],

                                [ 0, 0, 0, 1]
                                ])
        
        # render scene
        r = pyrender.OffscreenRenderer(960, 960)

        color, _ = r.render(scene, flags=RenderFlags.RGBA)
        # Image.fromarray(color).save(outdir+'/'+name+'_'+str(i)+'.png')

        vid.append(color)

        r.delete()

    out = np.stack(vid, axis=0)
    imageio.mimwrite(f'output/results.gif', out, fps=20)
    out_video = mp.VideoFileClip(f'output/results.gif')
    out_video.write_videofile("output/results.mp4")
    del out, vertices
    return f'output/results.mp4'

def predict(clip_text, method='fast'):
    gc.collect()
    print('prompt text instruction: {}'.format(clip_text))
    if torch.cuda.is_available():
        text = clip.tokenize([clip_text], truncate=True).cuda()
    else:
        text = clip.tokenize([clip_text], truncate=True)
    feat_clip_text = clip_model.encode_text(text).float()
    index_motion = trans_encoder.sample(feat_clip_text[0:1], False)
    pred_pose = net.forward_decoder(index_motion)
    pred_xyz = recover_from_ric((pred_pose*std+mean).float(), 22)
    output_name = hashlib.md5(clip_text.encode()).hexdigest()
    if method == 'fast':
        xyz = pred_xyz.reshape(1, -1, 22, 3)
        pose_vis = plot_3d.draw_to_batch(xyz.detach().cpu().numpy(), title_batch=None, outname=[f'output/results.gif'])
        out_video = mp.VideoFileClip("output/results.gif")
        out_video.write_videofile("output/results.mp4")
        return f'output/results.mp4'
    elif method == 'slow':
        output_path = render(pred_xyz.detach().cpu().numpy().squeeze(axis=0), device_id=0, name=output_name)
        return output_path

        
# ---- Gradio Layout -----
text_prompt = gr.Textbox(label="Text prompt", lines=1, interactive=True)
video_out = gr.Video(label="Motion", mirror_webcam=False, interactive=False) 
demo = gr.Blocks()
demo.encrypt = False

with demo:
    gr.Markdown('''
            <div>
            <h1 style='text-align: center'>Character Animation Creator using Text Prompt.</h1>
            <b>Text-2-Motion-GPT</b> models for human motion creation from textural descriptors.
            </div>
        ''')
    with gr.Row():
        with gr.Column():
            gr.Markdown('''
            ### Generate human motion by **Entering Text**
            ''')
    with gr.Column():
        with gr.Row():
            text_prompt.render()
            method = gr.Dropdown(["fast"], label="Method", value="fast")
        with gr.Row():
            generate_btn = gr.Button("Generate")
            generate_btn.click(predict, [text_prompt, method], [video_out], api_name="generate")
            print(video_out)
        with gr.Row():  
            video_out.render()
        
demo.launch(debug=True)